Engineers grow 3D bioprinted blood vessel

Spread the love
collage of four images demonstrating the process used in the lab
These images depict the method used to fabricate the 3D bioprinted vascular model with native endothelial and vascular smooth muscle cells.

Courtesy of Akhilesh Gaharwar

Vascular diseases such as aneurysms, peripheral artery disease and clots inside blood vessels account for 31% of global deaths. Despite this clinical burden, cardiovascular drug advancements have slowed over the past 20 years. The decrease in cardiovascular therapeutic development is attributed to the lack of efficiency in converting possible treatments into approved methods, specifically due to the discrepancy between studies that take place outside the body compared to inside.

Researchers at Texas A&M University aim to remodel current methodologies to minimize this gap and improve the translatability of these techniques by directing 3D bioprinting toward vascular medicine.

A team in the Department of Biomedical Engineering, led by Akhilesh Gaharwar, associate professor, and Abhishek Jain, assistant professor, has designed a 3D-bioprinted model of a blood vessel that mimics the native vascular function and disease response. Gaharwar is a biomaterials expert and has developed novel bioinks that offer unprecedented biocompatibility and control of mechanical properties needed to print blood vessels, whereas Jain’s expertise lies in creating biomimetic models of vascular and hematological diseases. This interdisciplinary and collaborative project was recently published in the journal Advanced Healthcare Materials.

Bioprinting in 3D is an advanced manufacturing technique capable of producing unique, tissue-shaped constructs in a layer-by-layer fashion with embedded cells, making the arrangement more likely to mirror the native, multicellular makeup of vascular structures. A range of hydrogel bioinks was introduced to design these structures; however, there is a limitation in available bioinks that can mimic the vascular composition of native tissues. Current bioinks lack high printability and are unable to deposit a high density of living cells into complex 3D architectures, making them less effective.

Vascular diseases such as aneurysms, peripheral artery disease and clots inside blood vessels account for 31% of global deaths. Despite this clinical burden, cardiovascular drug advancements have slowed over the past 20 years. The decrease in cardiovascular therapeutic development is attributed to the lack of efficiency in converting possible treatments into approved methods, specifically due to the discrepancy between studies that take place outside the body compared to inside.

Researchers at Texas A&M University aim to remodel current methodologies to minimize this gap and improve the translatability of these techniques by directing 3D bioprinting toward vascular medicine.

A team in the Department of Biomedical Engineering, led by Akhilesh Gaharwar, associate professor, and Abhishek Jain, assistant professor, has designed a 3D-bioprinted model of a blood vessel that mimics the native vascular function and disease response. Gaharwar is a biomaterials expert and has developed novel bioinks that offer unprecedented biocompatibility and control of mechanical properties needed to print blood vessels, whereas Jain’s expertise lies in creating biomimetic models of vascular and hematological diseases. This interdisciplinary and collaborative project was recently published in the journal Advanced Healthcare Materials.

Bioprinting in 3D is an advanced manufacturing technique capable of producing unique, tissue-shaped2÷ constructs in a layer-by-layer fashion with embedded cells, making the arrangement more likely to mirror the native, multicellular makeup of vascular structures. A range of hydrogel bioinks was introduced to design these structures; however, there is a limitation in available bioinks that can mimic the vascular composition of native tissues. Current bioinks lack high printability and are unable to deposit a high density of living cells into complex 3D architectures, making them less effective. https://today.tamu.edu/2021/08/16/biomedical-engineers-grow-3d-bioprinted-blood-vessel/