2 Astronomy Students have Mapped the Entire Milky Way Galaxy in Dwarf Stars for the first time

Spread the love
The Milky Way in the 2MASS infrared survey, similar to Hubble observations of the sky colour (near-infrared). Here, the visible stars are mostly bright giant stars. Credit: The Infrared Processing and Analysis Center (IPAC) http://www.ipac.caltech.edu/2mass/gallery/2mass_allskyatlas.jpg

The Milky Way in the 2MASS infrared survey, similar to Hubble observations of the sky colour (near-infrared). Here, the visible stars are mostly bright giant stars. Credit: The Infrared Processing and Analysis Center (IPAC) http://www.ipac.caltech.edu/2mass/gallery/2mass_allskyatlas.jpg

The Leiden Uni students show there are 58 billion dwarf stars, of which 7% reside in the outer regions of our Galaxy. This result is the most comprehensive model ever for the distribution of these stars. The Milky Way has a prominent, relatively flat disc with closely spaced bright stars, and a halo, a sphere of stars with a much lower density around it. Astronomers assume that the halo is the remnant of the first galaxies that fused together to form our Galaxy.

To find out exactly what the Milky Way looks like, astronomers have previously made maps using counts of the stars in the night sky. Students Isabel van Vledder and Dieuwertje van der Vlugt used the same technique in their research. Rather than studying bright stars, they used Hubble data from 274 dwarf stars, which were observed while it was looking for the most distant galaxies in the early Universe. The particular type of star they looked at were red dwarfs of spectral class M.

M dwarf Milky Way map small

Fields observed by the Hubble Space Telescope where M-dwarf stars have been found, plotted on a map of the sky with galactic longitude and latitude. In each field, indicated by circles, only a few dwarf stars are identified. However, by combining them, the students could derive an accurate model of the Galaxy. Credit: Leiden Observatory. Click for a full size image

Dwarf stars are undersized and often have too low a mass to burn hydrogen. As warm, rather than hot objects, they are best viewed with near-infrared cameras. Van Vledder comments: “Astronomers believe that there are very many of these stars. That makes them really quite suitable for mapping the Galaxy even though they are so hard to find.”

To find the distribution of the M dwarfs, Van Vledder and Van der Vlugt used 3 density models that astronomers use to describe the flat disc and halo, both separately and combined. To calculate which model best describes the structure of the Milky Way; the students then applied the Markov Chain Monte Carlo method. Van der Vlugt describes how this works: “You let a computer program test all possible values of each parameter of your model. It then fixes the value which corresponds best with the data.”

The model that includes both disk and halo was the perfect match. From the positions of the 274 M dwarfs in their sample, they inferred the existence of 58 billion dwarf stars. They were also able to accurately estimate the number of dwarfs in the halo, 7, higher than astronomers previously found for the whole Milky Way.

The results of the students are important for future research with the European Space Agency’s Euclid Space Telescope, due for launch in 2020. Like Hubble, Euclid will image the whole sky in near-infrared. Van Vledder adds: “With our research, astronomers can now better assess whether they are dealing with a distant galaxy or a star in our own Galaxy.” The students expect Euclid observations to yield an even more accurate picture of the Milky Way. https://www.ras.org.uk/news-and-press/2807-students-map-milky-way-with-dwarf-stars