New Model explains the Moon’s Weird Orbit

Spread the love
In the "giant impact" model of the moon's formation, the young moon began its orbit within Earth's equatorial plane. In the standard variant of this model (top panel), Earth's tilt began near today's value of 23.5 degrees. The moon would have moved outward smoothly along a path that slowly changed from the equatorial plane to the "ecliptic" plane, defined by Earth's orbit around the sun. If, however, Earth had a much larger tilt after the impact (~75 degrees, lower panel) then the transition between the equatorial and ecliptic planes would have been abrupt, resulting in large oscillations about the ecliptic. The second picture is consistent with the moon's current 5-degree orbital tilt away from the ecliptic. Credit: Douglas Hamilton

In the “giant impact” model of the moon’s formation, the young moon began its orbit within Earth’s equatorial plane. In the standard variant of this model (top panel), Earth’s tilt began near today’s value of 23.5 degrees. The moon would have moved outward smoothly along a path that slowly changed from the equatorial plane to the “ecliptic” plane, defined by Earth’s orbit around the sun. If, however, Earth had a much larger tilt after the impact (~75 degrees, lower panel) then the transition between the equatorial and ecliptic planes would have been abrupt, resulting in large oscillations about the ecliptic. The second picture is consistent with the moon’s current 5-degree orbital tilt away from the ecliptic. Credit: Douglas Hamilton

Simulations suggest a dramatic history for the Earth-moon duo. The moon’s orbit lies unusually far away from Earth, with a surprisingly large orbital tilt. A new paper, based on numerical models of the moon’s explosive formation and the evolution of the Earth-moon system, comes closer to tying up all the loose ends than any other previous explanation. The work suggests that the impact that formed the moon also caused calamitous changes to Earth’s rotation and the tilt of its spin axis.

It suggests the impact sent Earth spinning much faster, and at a much steeper tilt, than it does today. In the several billion years since that impact, complex interactions between Earth, the moon and sun have smoothed out many of these changes, resulting in the Earth-moon system that we see today. In this scenario, the remaining anomalies in the moon’s orbit are relics of the Earth-moon system’s explosive past. “Evidence suggests a giant impact blasted off a huge amount of material that formed the moon,” said Prof Douglas Hamilton, University of Maryland. “This material would have formed a ring of debris first, then the ring would have aggregated to form the moon. But this scenario does not quite work if Earth’s spin axis was tilted at the 23.5 degree angle we see today.”

Collisional physics calls for this ring of debris – and thus the moon’s orbit immediately after formation – to lie in Earth’s equatorial plane. As tidal interactions between Earth and the moon drove the moon further away from Earth, the moon should have shifted from Earth’s equatorial plane to the “ecliptic” plane, which corresponds to Earth’s orbit around the sun. But today, the moon’s orbit is tilted 5 degrees away from the ecliptic plane.

Hamilton and Matija Cuk of SETI et al, tried many different scenarios. But the most successful ones involved a moon-forming impact that sent Earth spinning extremely fast – as much as 2X rate predicted by other models. The impact also knocked Earth’s tilt way off, to somewhere between 60 and 80 degrees. The model also suggests the newly-formed moon started off very close to Earth, but then drifted away – to nearly 15X its initial distance. As it did so, the sun began to exert a more powerful influence over the moon’s orbit. Both factors – a highly tilted, fast spinning Earth and an outwardly-migrating moon – contributed to establishing the moon’s current weird orbit. The newborn moon’s orbit most likely tracked Earth’s equator, tilted at a steep 60-80 degree angle that matched Earth’s tilt.

A key finding is that if Earth was indeed tilted by more than 60 degrees after the moon formed, the moon could not transition smoothly from Earth’s equatorial plane to the ecliptic plane. Instead, the transition was abrupt and left the moon with a large tilt relative to the ecliptic – much larger than is observed today. “As the moon moved outward, Earth’s steep tilt made for a more chaotic transition as the sun became a bigger influence,” Cuk said. “Subsequently, and over billions of years, the moon’s tilt slowly decayed down to the 5 degrees we see today. So today’s five degree tilt is a relic and a signature of a much steeper tilt in the past.”

Hamilton acknowledges that the model doesn’t answer all the remaining questions about the moon’s orbit. But the model’s strength, he says, is that it offers a framework for answering new questions in the future.

“There are many potential paths from the moon’s formation to the Earth-moon system we see today. We’ve identified a few of them, but there are sure to be other possibilities,” Hamilton said. “What we have now is a model that is more probable and works more cleanly than previous attempts. We think this is a significant improvement that gets us closer to what actually happened.” http://www.umdrightnow.umd.edu/news/new-model-explains-moon%E2%80%99s-weird-orbit