Researchers probed Martian meteorites to reconstruct Mars’ chaotic history. Their findings suggest that Mars might not have had a global magma ocean.
In Jessica Barnes’ palm is an ancient, coin-sized mosaic of glass, minerals and rocks as thick as a strand of wool fiber. It is a slice of Martian meteorite, known as Northwest Africa 7034 or Black Beauty, that was formed when a huge impact cemented together various pieces of Martian crust.
Barnes is an assistant professor of planetary sciences in the University of Arizona Lunar and Planetary Laboratory. She and her team chemically analyzed the Black Beauty meteorite and the infamous Allan Hills 84001 meteorite – controversial in the 1990s for allegedly containing Martian microbes — to reconstruct Mars’ water history and planetary origins.
Their analysis, published today in Nature Geoscience, showed that Mars likely received water from at least two vastly different sources early in its history. The variability the researchers found implies that Mars, unlike Earth and the moon, never had an ocean of magma completely encompassing the planet.
“These two different sources of water in Mars’ interior might be telling us something about the kinds of objects that were available to coalesce into the inner, rocky planets,” Barnes said. Two distinct planetesimals with vastly different water contents could have collided and never fully mixed. “This context is also important for understanding the past habitability and astrobiology of Mars.” https://uanews.arizona.edu/story/martian-mash-meteorites-tell-story-mars-water-history
Recent Comments