Category Physics

Researchers ‘Crack the Code’ for Quelling Electromagnetic Interference

FAU Center for Connected Autonomy and Artificial Intelligence highlighted in 'Nature Reviews'
Equipped with a breakthrough algorithmic solution, researchers have “cracked the code” on interference when machines need to talk with each other—and people. Credit: Alex Dolce, Florida Atlantic University

Florida Atlantic Center for Connected Autonomy and Artificial Intelligence (CA-AI.fau.edu) researchers have “cracked the code” on interference when machines need to talk with each other—and people.

Electromagnetic waves make wireless connectivity possible but create a lot of unwanted chatter. Referred to as “electromagnetic interference,” this noisy byproduct of wireless communications poses formidable challenges in modern day dense IoT and AI robotic environments...

Read More

Researchers Create New Class of Materials called ‘Glassy Gels’

gloved hands are stretching a thin sheet of clear material over a nail; the material is stretching over the sharp nail without breaking
Image credit: Meixiang Wang.

Researchers have created a new class of materials called “glassy gels” that are very hard and difficult to break despite containing more than 50% liquid. Coupled with the fact that glassy gels are simple to produce, the material holds promise for a variety of applications.

Gels and glassy polymers are classes of materials that have historically been viewed as distinct from one another. Glassy polymers are hard, stiff and often brittle. They’re used to make things like water bottles or airplane windows. Gels – such as contact lenses – contain liquid and are soft and stretchy.

“We’ve created a class of materials that we’ve termed glassy gels, which are as hard as glassy polymers, but – if you apply enough force – can stretch up to five times t...

Read More

Wirelessly Powered Relay will help bring 5G Technology to Smart Factories

Figure 2 Prototype of the proposed relay transceiver The prototype of the proposed relay transceiver was fabricated with Si CMOS 65nm chips and 4×2 patch phased-array antenna board.
Prototype of the proposed relay transceiver
The prototype of the proposed relay transceiver was fabricated with Si CMOS 65nm chips and 4×2 patch phased-array antenna board.

The proposed innovative design leads to unprecedented power conversion efficiency and improved versatility. A recently developed wirelessly powered 5G relay could accelerate the development of smart factories, report scientists from Tokyo Tech. By adopting a lower operating frequency for wireless power transfer, the proposed relay design solves many of the current limitations, including range and efficiency. In turn, this allows for a more versatile and widespread arrangement of sensors and transceivers in industrial settings.

One of the hallmarks of the Information Age is the transformation of industries towards...

Read More

Researchers improve Solid Oxide Fuel Cell Threefold

Threefold improvement of solid oxide fuel cell in 4 minutes
This image was selected as a front-inside cover of Advanced Materials illustrating the morphology evolution of oxide nano-catalyst over time during coating process. Credit: Korea Institute of Energy Research (KIER)

A research team has successfully developed a catalyst coating technology that significantly improves the performance of solid oxide fuel cells (SOFCs) in just four minutes.

Dr. Yoonseok Choi from the Hydrogen Convergence Materials Laboratory at the Korea Institute of Energy Research (KIER), in collaboration with Professor WooChul Jung from the Department of Materials Science and Engineering at KAIST and Professor Beom-Kyung Park from the Department of Materials Science and Engineering at Pusan National University, led the research.

Their findings were published in Adva...

Read More