Category Physics

Soft Gold enables Connections between Nerves and Electronics

Close-up illustrating that the gold nanowires combined with soft silicon rubber are stretchable.
The soft electrodes developed by Klas Tybrandt’s research group at Linköping University are stretchable to follow the body’s movements without damaging tissue. They consist of extremely thin threads of gold and soft silicone rubber.THOR BALKHED

Gold does not readily lend itself to being turned into long, thin threads. But researchers at Linköping University in Sweden have now managed to create gold nanowires and develop soft electrodes that can be connected to the nervous system. The electrodes are soft as nerves, stretchable and electrically conductive, and are projected to last for a long time in the body.

Some people have a “heart of gold,” so why not “nerves of gold”? In the future, it may be possible to use this precious metal in soft interfaces to connect electronics to the ...

Read More

A Flapping Microrobot inspired by the Wing Dynamics of Rhinoceros Beetles

A flapping microrobot inspired by the wing dynamics of rhinoceros beetles

The wing dynamics of flying animal species have been the inspiration for numerous flying robotic systems. While birds and bats typically flap their wings using the force produced by their pectoral and wing muscles, the processes underlying the wing movements of many insects remain poorly understood.

Researchers at Ecole Polytechnique Fédérale de Lausanne (EPFL, Switzerland) and Konkuk University (South Korea) recently set out to explore how herbivorous insects known as rhinoceros beetles deploy and retract their wings. The insight they gathered, outlined in a paper published in Nature, was then used to develop a new flapping microrobot that can passively deploy and retract its wings, without the need for extensive actuators.

“Insects, including beetles, are theoretically belie...

Read More

Massive Solar Wind Disturbance caused Earth’s Magnetosphere to Fly Without its Usual Tail

Massive solar wind disturbance caused Earth’s magnetosphere to fly without its usual tail
A coronal mass ejection in April 2023 caused Earth to grow Alfvén wings. (This CME, with Earth illustrated to scale, took place in 2021.) Credit: NASA/GSFC/SDO

Like a supersonic jet being blasted with high-speed winds, Earth is constantly being bombarded by a stream of charged particles from the sun known as solar wind.

Just like wind around a jet or water around a boat, these solar wind streams curve around Earth’s magnetic field, or magnetosphere, forming on the sunward side of the magnetosphere a front called a bow shock and stretching it into a wind sock shape with a long tail on the nightside.

Dramatic changes to the solar wind alter the structure and dynamics of the magnetosphere...

Read More

Scientists Identify New Class of Semiconductor Nanocrystals

NRL scientists identify new of semiconductor nanocrystals
Credit: ACS Nano (2024). DOI: 10.1021/acsnano.4c02905

U.S. Naval Research Laboratory (NRL) scientists confirm the identification of a new class of semiconductor nanocrystals with bright ground-state excitons, a significant advancement in the field of optoelectronics, in an article published in the American Chemical Society (ACS) journal ACS Nano.

The groundbreaking theoretical research could revolutionize the development of highly efficient light-emitting devices and other technologies.

Generally, the lowest-energy exciton in nanocrystals is poorly emitting, earning the name “dark” exciton. Because it slows the emission of light, the dark exciton limits the performance of nanocrystal-based devices like lasers or light-emitting diodes (LEDs)...

Read More