Category Physics

New Superconducting Material discovered in Transition-Metal Dichalcogenides Materials

New superconducting material discovered in transition-metal dichalcogenides materials
The crystal structure and superconducting properties of (InSe2)0.12NbSe2. Credit: Niu Rui

With the support of electrical transport and magnetic measurement systems of Steady High Magnetic Field Facility (SHMFF), a research team from Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences (CAS), discovered a new superconducting material called (InSe2)xNbSe2, which possesses a unique lattice structure. The superconducting transition temperature of this material reaches 11.6 K, making it the transition metal sulfide superconductor with the highest transition temperature under ambient pressure.

The results were published in Journal of the American Chemical Society.

TMD materials have received lots of attention due to their numerous applications in the fields of cata...

Read More

Researchers create Faster and Cheaper way to Print Tiny Metal Structures with Light

Their technique could transform a scientific field reliant on cost-prohibitive technology. Researchers have developed a light-based means of printing nano-sized metal structures that is 480 times faster and 35 times cheaper than the current conventional method. It is a scalable solution that could transform a scientific field long reliant on technologies that are prohibitively expensive and slow. Their method is called superluminescent light projection (SLP).

Technological advances in many fields rely on the ability to print metallic structures that are nano-sized — a scale hundreds of times smaller than the width of a human hair.

Sourabh Saha, assistant professor in the George W. Woodruff School of Mechanical Engineering, and Jungho Choi, a Ph.D...

Read More

The Metalens meets the Stars – Large, All-glass Metalens Images Sun, Moon and Nebulae

image of the metalens and camera
This 10-centimeter-diameter glass metalens can image the sun, the moon and distant nebulae with high resolution. (Credit: Capasso Lab/Harvard SEAS)
 

Metalenses have been used to image microscopic features of tissue and resolve details smaller than a wavelength of light. Now they are going bigger.

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) have developed a 10-centimeter-diameter glass metalens that can image the sun, the moon and distant nebulae with high resolution.

It is the first all-glass, large-scale metalens in the visible wavelength that can be mass produced using conventional CMOS fabrication technology.

The research is published in ACS Nano.

“The ability to accurately control the size of tens of billions of nanopill...

Read More

Scientists Build Mass-Producible Miniature Quantum Memory Element

Researchers at the University of Basel have built a quantum memory element based on atoms in a tiny glass cell. In the future, such quantum memories could be mass-produced on a wafer.

It is hard to imagine our lives without networks such as the internet or mobile phone networks. In the future, similar networks are planned for quantum technologies that will enable the tap-proof transmission of messages using quantum cryptography and make it possible to connect quantum computers to each other.

Like their conventional counterparts, such quantum networks require memory elements in which information can be temporarily stored and routed as needed...

Read More