Category Physics

New Quantum Device Generates Single Photons and Encodes Information

2023-08-24
Formed within wells indented into the stack of two different layered materials, a monolayer semiconductor and an anti-ferromagnetic crystal, the chiral quantum light emissions rise up out of the material and could be used for quantum information and communication applications.

A new approach to quantum light emitters generates a stream of circularly polarized single photons, or particles of light, that may be useful for a range of quantum information and communication applications. A Los Alamos National Laboratory team stacked two different atomically thin materials to realize this chiral quantum light source.

“Our research shows that it is possible for a monolayer semiconductor to emit circularly polarized light without the help of an external magnetic field,” said Han Htoon, scien...

Read More

Brain-computer interface enables woman with Severe Paralysis to speak through Digital Avatar

Brain-computer interface enables woman with severe paralysis to speak through digital avatar
Multimodal speech decoding in a participant with vocal-tract paralysis. Credit: Nature (2023). DOI: 10.1038/s41586-023-06443-4

Researchers at UC San Francisco and UC Berkeley have developed a brain-computer interface (BCI) that has enabled a woman with severe paralysis from a brainstem stroke to speak through a digital avatar.

It is the first time that either speech or facial expressions have been synthesized from brain signals. The system can also decode these signals into text at nearly 80 words per minute, a vast improvement over commercially available technology.

Edward Chang, MD, chair of neurological surgery at UCSF, who has worked on the technology, known as a brain computer interface, or BCI, for more than a decade, hopes this latest research breakthrough, appearing Aug...

Read More

Researchers develop Arrays of Tiny Crystals that deliver Efficient Wireless Energy

Photo-actuators via epitaxial growth of microcrystal arrays ...
DAE in biaxially aligned microcrystal composites.

Imagine a person on the ground guiding an airborne drone that harnesses its energy from a laser beam, eliminating the need for carrying a bulky onboard battery.

That is the vision of a group of University of Colorado at Boulder scientists from the Hayward Research Group.

In a new study, the Department of Chemical and Biological Engineering researchers have developed a novel and resilient photomechanical material that can transform light energy into mechanical work without heat or electricity, offering innovative possibilities for energy-efficient, wireless and remotely controlled systems. Its wide-ranging potential spans across diverse industries, including robotics, aerospace and biomedical devices.

“We cut out the middle man,...

Read More

Scientists Trap Light inside a Magnet

Vinod_Florian magneto-optical research
Light trapped inside a magnetic crystal can strongly enhance its magneto-optical interactions. Image created by Rezlind Bushati.

A new study led by Vinod M. Menon and his group at the City College of New York shows that trapping light inside magnetic materials may dramatically enhance their intrinsic properties. Strong optical responses of magnets are important for the development of magnetic lasers and magneto-optical memory devices, as well as for emerging quantum transduction applications.

In their new article in Nature, Menon and his team report the properties of a layered magnet that hosts strongly bound excitons — quasiparticles with particularly strong optical interactions. Because of that, the material is capable of trapping light — all by itself...

Read More