Category Physics

Entangled Atoms Cross Quantum Network from one Lab to another

Illustration mehrerer Gebäude mit einer roten Kugel im ersten Gebäude und einer grünen Kugel im letzten, dazwischen eine strichlierte Linie.
The nodes of this network were housed in two labs at the Campus Technik to the west of Innsbruck, Austria.

Trapped ions are one of the leading systems to build quantum computers and other quantum technologies. To link multiple such quantum systems, interfaces are needed through which the quantum information can be transmitted. In recent years, researchers led by Tracy Northup and Ben Lanyon at the University of Innsbruck’s Department of Experimental Physics have developed a method for doing this by trapping atoms in optical cavities such that quantum information can be efficiently transferred to light particles. The light particles can then be sent through optical fibers to connect atoms at different locations...

Read More

A Quasiparticle that can Transfer Heat under Electrical Control

Because thermal conductivity in this class of materials can be changed with application of an external electric field at room temperature, they hold promise for use in heat switches for everyday applications, like collection of solar power.
Photo: Getty Images

Scientists have found the secret behind a property of solid materials known as ferroelectrics, showing that quasiparticles moving in wave-like patterns among vibrating atoms carry enough heat to turn the material into a thermal switch when an electrical field is applied externally.

A key finding of the study is that this control of thermal conductivity is attributable to the structure of the material rather than any random collisions among atoms...

Read More

Performing Matrix Multiplications at the Speed of Light for Enhanced Cybersecurity

Matrix multiplications at the speed of light
Electro-optic blocks cointegrated for the development of a neuromorphic photonic processor. Credit: Giamougiannis et al., doi 10.1117/1.AP.5.1.016004

“All things are numbers,” avowed Pythagoras. Today, 25 centuries later, algebra and mathematics are everywhere in our lives, whether we see them or not. The Cambrian-like explosion of artificial intelligence (AI) brought numbers even closer to us all, since technological evolution allows for parallel processing of a vast amounts of operations.

Progressively, operations between scalars (numbers) were parallelized into operations between vectors, and subsequently, matrices. Multiplication between matrices now trends as the most time- and energy-demanding operation of contemporary AI computational systems...

Read More

New Type of Solar Cell is being tested in Space

New type of solar cell is being tested in space
Nanowires in three materials imaged by a scanning electron microscope. A thread is a thousand times thinner than a strand of hair. The red and blue colour shows the direction of the current, and that the nanowires work as a tandem solar cell. Credit: Lund University

Physics researchers at Lund University in Sweden recently succeeded in constructing small solar radiation-collecting antennas—nanowires—using three different materials that are a better match for the solar spectrum compared with today’s silicon solar cells. As the nanowires are light and require little material per unit of area, they are now to be installed for tests on satellites, which are powered by solar cells and where efficiency, in combination with low weight, is the most important factor...

Read More