Do more with one link - claim and personalize your FREE link today! Effortlessly schedule, video meet, message chat, network, share materials, e-sign, etc – all in one spot. Collaborate, Nurture connections, Improve client services, Expedite deal closures, and more. Join FREE!!
A crystal with 171Yb+ -172Yb+ ions is trapped in an ultra-high vacuum system. The researchers use different lasers to perform the simulation: one pair of lasers (indicated by the purple arrows) is used to simulate the coherent part of the evolution, while another laser (the blue arrow) is used to simulate and control the environment. (Image courtesy of Guido Pagano/Rice University.)
Discovery could advance renewable energy technologies, molecular electronics and quantum computing. Researchers at Rice University have made a meaningful advance in the simulation of molecular electron transfer — a fundamental process underpinning countless physical, chemical and biological processes...
PTE measurement results at the ERWPT resonance frequency in the midrange (2m): Almost the same PTE in the lateral plane (xy-plane), demonstrating arrangement free characteristics, while the PTE and resonance frequency vary depending on the z-direction position. Credit: Advanced Science (2024). DOI: 10.1002/advs.202407827
A groundbreaking advancement in technology is paving the way for mobile phones and other electronic devices to recharge simply by being kept in a pocket. This innovative system enables wireless charging throughout three-dimensional (3D) spaces, encompassing walls, floors, and air.
On December 12, Professor Franklin Bien and his research team in the Department of Electrical Engineering at UNIST announced the creation of a revolutionary electric resonance-based wire...
Electrocatalytic water splitting, a process that entails breaking down water into hydrogen and oxygen, is a promising approach to produce clean hydrogen for fuel cells, which could in turn be used to power large electric vehicles. So far, the real-world use of this process has been limited by the sluggish kinetics of the oxygen evolution reaction (OER), a key chemical reaction occurring at the anode.
Researchers at Max-Planck-Institute for Chemical Physics of Solids, Weizmann Institute of Science and other institutes recently introduced an innovative approach to accelerate this reaction, using topological chiral semimetals as electrocatalysts.
Their findings, published in Nature Energy, demonstrate that spin-orbit coupling (SOC) inherent in these materials ...
Site-selective immobilization of different bioreceptors on individual field-effect transistors, achieved through the use of thermal scanning probe lithography. Each bioreceptor can be tuned to detect a different disease. Credit: NYU Tandon School of Engineering
In a world grappling with a multitude of health threats—ranging from fast-spreading viruses to chronic diseases and drug-resistant bacteria—the need for quick, reliable, and easy-to-use home diagnostic tests has never been greater. Imagine a future where these tests can be done anywhere, by anyone, using a device as small and portable as your smartwatch. To do that, you need microchips capable of detecting miniscule concentrations of viruses or bacteria in the air.
Now, new research shows it’s possible to develop and buil...
Recent Comments