Category Technology/Electronics

New Circuit Boards can be Repeatedly Recycled

A small brown circuit board sits on a gray background. To its right are a small copper plate, sheets of glass fibers in a crosshatch pattern, small chunks of vitrimer plastic that’s been removed from a circuit board, and a computer chip.
A team led by researchers at the University of Washington developed a new PCB that performs on par with traditional materials and can be recycled repeatedly with negligible material loss. Researchers used a solvent that transforms a type of vitrimer — a cutting-edge class of polymer — into a jelly-like substance without damage, allowing solid components to be plucked out for reuse or recycling. Here, from left to right is a vitrimer-based circuit board, a sheet of glass fibers, vitrimer that’s been swollen and removed from a board, and electrical components such as a computer chip.Mark Stone/University of Washington

Researchers have developed a new PCB that performs on par with traditional materials and can be recycled repeatedly with negligible material loss...

Read More

DeFake Tool Protects Voice Recordings from Cybercriminals

voice
Credit: Pixabay/CC0 Public Domain

In what has become a familiar refrain when discussing artificial intelligence (AI)-enabled technologies, voice cloning makes possible beneficial advances in accessibility and creativity while also enabling increasingly sophisticated scams and deepfakes. To combat the potential negative impacts of voice cloning technology, the U.S. Federal Trade Commission (FTC) challenged researchers and technology experts to develop breakthrough ideas on preventing, monitoring and evaluating malicious voice cloning.

Ning Zhang, an assistant professor of computer science and engineering in the McKelvey School of Engineering at Washington University in St. Louis, was one of three winners of the FTC’s Voice Cloning Challenge announced April 8...

Read More

Compact Quantum Light Processing – A leap forward in optical quantum computing

Fig. 1: Resource-efficient multi-photon processor based on an optical fiber loop.
Fig. 1: Resource-efficient multi-photon processor based on an optical fiber loop. C: Marco Di Vita

An international collaboration of researchers, led by Philip Walther at University of Vienna, have achieved a significant breakthrough in quantum technology, with the successful demonstration of quantum interference among several single photons using a novel resource-efficient platform. The work published in the journal Science Advances represents a notable advancement in optical quantum computing that paves the way for more scalable quantum technologies.

Interference among photons, a fundamental phenomenon in quantum optics, serves as a cornerstone of optical quantum computing.

It involves harnessing the properties of light, such as its wave-particle duality, to induce interference...

Read More

Researchers Develop Energy-Efficient Probabilistic Computer by Combining CMOS with Stochastic Nanomagnet

Researchers develop energy-efficient computer by combining CMOS with stochastic nanomagnet
A schematic illustrating the difference in the current deterministic CMOS computer (a), near-future heterogeneous version of the probabilistic computer, and (c) the final form of the probabilistic computer fully based on the spintronics technology. The table on the right side represents the comparison between them in terms of the chip area, energy consumption, and manufacturability. Credit: Shunsuke Fukami and Kerem Camsari

Researchers at Tohoku University and the University of California, Santa Barbara, have unveiled a probabilistic computer prototype. Manufacturable with a near-future technology, the prototype combines a complementary metal-oxide semiconductor (CMOS) circuit with a limited number of stochastic nanomagnets, creating a heterogeneous probabilistic computer.

Developin...

Read More