Category Technology/Electronics

Holograms with a twist: Entangling light and information

Quantum holograms using polarized light and metasurfaces enable precise control over entangled holographic information, advancing practical applications in quantum communication and anticounterfeiting technologies

Quantum entanglement is a fundamental phenomenon in nature and one of the most intriguing aspects of quantum mechanics. It describes a correlation between two particles, such that measuring the properties of one instantly reveals those of the other, no matter how far apart they are. This unique property has been harnessed in applications such as quantum computing and quantum communication.

A common method for generating entanglement is through a nonlinear crystal, which produces photon pairs with entangled polarizations via spontaneous parametric down-conversion (SPDC)...

Read More

Ultra-broadband photonic chip boosts optical signals to reshape high-speed data transmission

Ultra-broadband photonic chip boosts optical signals
A focus-stacked macro photograph of a fabricated gallium phosphide photonic chip featuring multiple spiral waveguides and other test structures. The chip width is just 0.55 cm across. Due to the high Kerr nonlinearity of gallium phosphide, its high refractive index, and its negligible two-photon absorption, extremely efficient optical parametric amplification and frequency conversion over S, C, and L optical communication bands are achieved using this chip. Credit: Nikolai Kuznetsov (EPFL).

Modern communication networks rely on optical signals to transfer vast amounts of data. But just like a weak radio signal, these optical signals need to be amplified to travel long distances without losing information.

The most common amplifiers, erbium-doped fiber amplifiers (EDFAs), have served...

Read More

‘Nanodot’ control could fine-tune light for sharper displays, quantum computing

Illustration of light emission from a molybdenum diselenide nanodot embedded in tungsten diselenide.
On the left is an illustration of the experimental setup from this study. Molybdenum diselenide nanodots, represented by red triangles, are embedded in tungsten diselenide and encapsulated by hexagonal boron nitride (hBN) on top and bottom. A focused electron beam, shown in green, in a scanning transmission electron microscope (STEM) is aimed at the structure. The emitted light is collected to generate an intensity map. On the upper right is a dark-field STEM image of the molybdenum diselenide nanodot embedded inside tungsten diselenide. The contour of the nanodot is marked by dotted green lines. On the lower right is an artificially colored light emission intensity map of the same region, with the localized emission from the nanodot clearly visible. Credit: Provided by the researchers...
Read More

Feeling is believing: Bionic hand ‘knows’ what it’s touching, grasps like a human

Feeling is believing: Bionic hand
The new hybrid robotic hand blends soft and rigid parts with touch-sensitive technology, allowing for precise and flexible object handling. Credit: Sriramana Sankar / Johns Hopkins University

Johns Hopkins University engineers have developed a pioneering prosthetic hand that can grip plush toys, water bottles, and other everyday objects like a human, carefully conforming and adjusting its grasp to avoid damaging or mishandling whatever it holds.

The system’s hybrid design is a first for robotic hands, which have typically been too rigid or too soft to replicate a human’s touch when handling objects of varying textures and materials. The innovation offers a promising solution for people with hand loss and could improve how robotic arms interact with their environment.

Details abou...

Read More