Category Technology/Electronics

Researchers develop Arrays of Tiny Crystals that deliver Efficient Wireless Energy

Photo-actuators via epitaxial growth of microcrystal arrays ...
DAE in biaxially aligned microcrystal composites.

Imagine a person on the ground guiding an airborne drone that harnesses its energy from a laser beam, eliminating the need for carrying a bulky onboard battery.

That is the vision of a group of University of Colorado at Boulder scientists from the Hayward Research Group.

In a new study, the Department of Chemical and Biological Engineering researchers have developed a novel and resilient photomechanical material that can transform light energy into mechanical work without heat or electricity, offering innovative possibilities for energy-efficient, wireless and remotely controlled systems. Its wide-ranging potential spans across diverse industries, including robotics, aerospace and biomedical devices.

“We cut out the middle man,...

Read More

Scientists Trap Light inside a Magnet

Vinod_Florian magneto-optical research
Light trapped inside a magnetic crystal can strongly enhance its magneto-optical interactions. Image created by Rezlind Bushati.

A new study led by Vinod M. Menon and his group at the City College of New York shows that trapping light inside magnetic materials may dramatically enhance their intrinsic properties. Strong optical responses of magnets are important for the development of magnetic lasers and magneto-optical memory devices, as well as for emerging quantum transduction applications.

In their new article in Nature, Menon and his team report the properties of a layered magnet that hosts strongly bound excitons — quasiparticles with particularly strong optical interactions. Because of that, the material is capable of trapping light — all by itself...

Read More

Researchers fabricate Phase-Heterojunction All-Inorganic Perovskite Solar Cells with an Efficiency Above 21.5%

Phase-heterojunction all-inorganic perovskite solar cells with an efficiency above 21.5%
Schematic representation of fabrication of phase-heterojunction perovskite solar cells. Credit: Mali et al.

Solar technologies have become increasingly advanced over the years, with the discovery of new photovoltaic materials and designs. While solar cells based on a mixture of organic and inorganic halide perovskite materials have been the topic of numerous research studies and achieved promising performances, these cells are often difficult to fabricate on a large-scale.

Researchers at Chonnam University in South Korea recently introduced an alternative solar cell design fully based on inorganic perovskites. Their solar cells, introduced in Nature Energy, could be easier to fabricate on a large-scale, while nonetheless achieving promising power conversion efficiencies (PCEs).

“...

Read More

Scientists Discover Novel Way of Reading Data in Antiferromagnets, Unlocking their use as Computer Memory

A microscopic image of the tiny device containing antiferromagnetic manganese bismuth telluride (green) that the Nanyang Technological University, Singapore researchers did their experiments on. The lines (light yellow) radiating from the centre are electrodes from which current was passed through the manganese bismuth telluride. (Image: NTU Singapore)

Scientists led by Nanyang Technological University, Singapore (NTU Singapore) investigators have made a significant advance in developing alternative materials for the high-speed memory chips that let computers access information quickly and that bypass the limitations of existing materials.

They have discovered a way that allows them to make sense of previously hard-to-read data stored in these alternative materials, known as antifer...

Read More