Category Technology/Electronics

New Camera offers Ultrafast Imaging at a Fraction of the Normal Cost

Researchers developed a diffraction-gated real-time ultrahigh-speed mapping (DRUM) camera that can capture a dynamic event in a single exposure at 4.8 million frames per second. Pictured are researchers Xianglei Liu and Jinyang Liang working on the optical setup.
Credit: Xianglei Liu and Jinyang Liang, Institut national de la recherche scientifique (INRS).

In a new paper, researchers report a camera that could offer a much less expensive way to achieve ultrafast imaging for a wide range of applications such as real-time monitoring of drug delivery or high-speed lidar systems for autonomous driving. Researchers show that their new diffraction-gated real-time ultrahigh-speed mapping (DRUM) camera can capture a dynamic event in a single exposure at 4.8 million frames per second.

Captur...

Read More

Battery-Free Robots use Origami to Change Shape in Mid-Air

A hand holding tweezers that are holding a yellow square with circuits on it
UW researchers developed small robotic devices that can change how they move through the air by “snapping” into a folded position during their descent. Each device has an onboard battery-free actuator, a solar power-harvesting circuit and controller to trigger these shape changes in mid-air. Shown here is a “microflier” in the unfolded state.Mark Stone/University of Washington

Researchers at the University of Washington have developed small robotic devices that can change how they move through the air by “snapping” into a folded position during their descent.

When these “microfliers” are dropped from a drone, they use a Miura-ori origami fold to switch from tumbling and dispersing outward through the air to dropping straight to the ground...

Read More

Researchers make a significant step towards reliably Processing Quantum Information

Green laser light is the correct energy to manipulate the energy states of barium ions.

New optical system designed to target and control individual atoms. Using laser light, researchers have developed the most robust method currently known to control individual qubits made of the chemical element barium. The ability to reliably control a qubit is an important achievement for realizing future functional quantum computers.

This new method, developed at the University of Waterloo’s Institute for Quantum Computing (IQC), uses a small glass waveguide to separate laser beams and focus them four microns apart, about four-hundredths of the width of a single human hair. The precision and extent to which each focused laser beam on its target qubit can be controlled in parallel is unmatched by previous research.

“Our design limits the amount of crosstalk-the amount of light ...

Read More

Machine Learning Contributes to Better Quantum Error Correction

ai-generated image
An AI-generated image illustrating the work

Researchers from the RIKEN Center for Quantum Computing have used machine learning to perform error correction for quantum computers—a crucial step for making these devices practical—using an autonomous correction system that despite being approximate, can efficiently determine how best to make the necessary corrections.

In contrast to classical computers, which operate on bits that can only take the basic values 0 and 1, quantum computers operate on “qubits”, which can assume any superposition of the computational basis states...

Read More