Category Uncategorized

Astronomers Discover Heavy Elements after Bright Gamma-Ray Burst from Neutron Star Merger

An artist illustration of a merger of two neutron stars that create heavy elements.
Illustration courtesy of Luciano Rezzolla, University of Frankfurt, Germany

Breakthrough discovery puts astronomers one step closer to solving the mystery of the origin of elements that are heavier than iron. An international team of astronomers — including Clemson University astrophysicist Dieter Hartmann — obtained observational evidence for the creation of rare heavy elements in the aftermath of a cataclysmic explosion triggered by the merger of two neutron stars.

The massive explosion unleashed a gamma-ray burst, GRB230307A, the second brightest in 50 years of observations and about 1,000 times brighter than a typical gamma-ray burst. GRB230307A was first detected by NASA’s Fermi Gamma-Ray Space Telescope on March 7, 2023.

Using multiple space- and ground-based telescopes, in...

Read More

Resurrecting Niobium for Quantum Science

The Josephson junction is the information-processing heart of the superconducting qubit. Pictured here is the niobium Josephson junction engineered by David Schuster of Stanford University and his team. Their junction design has resurrected niobium as a viable option as a core qubit material.
The Josephson junction is the information-processing heart of the superconducting qubit. Pictured here is the niobium Josephson junction engineered by David Schuster of Stanford University and his team. Their junction design has resurrected niobium as a viable option as a core qubit material. (Image by Alexander Anferov/the University of Chicago’s Pritzker Nanofabrication Facility.)

Expanding possibilities for superconducting qubits. For years, niobium was considered an underperformer when it came to superconducting qubits. Now scientists supported by Q-NEXT have found a way to engineer a high-performing niobium-based qubit and so take advantage of niobium’s superior qualities.

When it comes to quantum technology, niobium is making a comeback...

Read More

Biomolecules from Formaldehyde on Ancient Mars

Organic materials discovered on Mars may have originated from atmospheric formaldehyde, according to new research, marking a step forward in our understanding of the possibility of past life on the Red Planet.

Scientists from Tohoku University have investigated whether the early atmospheric conditions on Mars had the potential to foster the formation of biomolecules – organic compounds essential for biological processes.

Their findings, published in Scientific Reports, offer intriguing insights into the plausibility of Mars harboring life in its distant past.

Today, Mars presents a harsh environment characterized by dryness and extreme cold, but geological evidence hints at a more hospitable past.

About 3.8-3...

Read More

High-Intensity Exercise can Reverse Neurodegeneration in Parkinson’s, study suggests

Dopamine Transporter Levels Pre- and Post-Exercise. A Average 18F-FE-PE2I DAT BPND images before and after six months of exercise. The red box including the midbrain and SN is enlarged. B 18F-FE-PE2I BPND in the SN pre- and post-exercise by study participant. Individual lines are red if an increase was observed, blue if a decrease was observed. The solid black line represents the mean of our cohort, the dashed black line represents the expected decrease from the pre-exercise average in the absence of intervention. Credit: npj Parkinson’s Disease (2024). DOI: 10.1038/s41531-024-00641-1

High-intensity exercise induces brain-protective effects that have the potential to not just slow down but possibly reverse the neurodegeneration associated with Parkinson’s disease, a new pilot ...

Read More