Devising Topological Superconductor

Spread the love
Group works toward devising topological superconductor

A schematic of an interpocket paired state, one of two topological superconducting states proposed in the latest work from the lab of Eun-Ah Kim, associate professor of physics at Cornell University. The material used is a monolayer transition metal dichalcogenide. Credit: Eun-Ah Kim, Cornell University

The experimental realization of ultrathin graphene – which earned two scientists from Cambridge the Nobel Prize in physics in 2010 – has ushered in a new age in materials research. What started with graphene has evolved to include numerous related single-atom-thick materials, which have unusual properties due to their ultra-thinness. Among them are transition metal dichalcogenides (TMDs), materials that offer several key features not available in graphene and are emerging as next-generation semiconductors.
TMDs could realize topological superconductivity and thus provide a platform for quantum computing.

The group’s proposal: The TMDs’ unusual properties favor two topological superconducting states, which, if experimentally confirmed, will open up possibilities for manipulating topological superconductors at temperatures near absolute zero. Kim identified hole-doped (positive charge-enhanced) single-layer TMDs as a promising candidate for topological superconductivity, based on the known special locking between spin state and kinetic energy of electrons (spin-valley locking) of single-layer TMDs, as well as the recent observations of superconductivity in electron-doped (negative charge-enhanced) single-layer TMDs.

The group’s goal is a superconductor that operates at -1K (-457F), that could be cooled with liquid helium sufficiently to maintain quantum computing potential in a superconducting state. Theoretically, housing a quantum computer powerful enough to justify the power needed to keep the superconductor at 1K is not out of the question, Kim said. In fact, IBM already has a 7-qubit computer, which operates at less than 1 Kelvin, available to the public through its IBM Quantum Experience.

A quantum computer with 6X more qubits would fundamentally change computing, Kim said. “If you get to 40 qubits, that computing power will exceed any classical computers out there,” she said. “And to house a 40-qubit [quantum computer] in cryogenic temperature is not that big a deal. It will be a revolution.”
http://www.news.cornell.edu/stories/2017/04/group-works-toward-devising-next-gen-superconductor