The kidney structures formed could be used to study abnormalities of kidney development, chronic kidney disease, the effects of toxic drugs, and be incorporated into bioengineered devices to treat patients with acute and chronic kidney injury. In the longer term, these methods could hasten progress toward replacing a damaged or diseased kidney with tissue derived from a patient’s own cells.
CKD affects 9 – 11% of the U.S. adult population and is a serious public health problem worldwide. There is gradual and irreversible loss of nephrons, the individual functional units of the kidney. Patients with end-stage kidney disease benefit from treatments such as dialysis and kidney transplantation, but there are limited supply of compatible organ donors.
While the human kidney does have some capacity to repair itself after injury, it is not able to regenerate new nephrons. In previous studies, researchers have successfully differentiated stem cells into heart, liver, pancreas or nerve cells by adding certain chemicals, but kidney cells have proved challenging. Using normal kidney development as a roadmap, the BWH investigators developed an efficient method to create kidney precursor cells that self assemble into structures which mimic complex structures of the kidney. The research team further tested these organoids 3D organ structures grown in the lab – and found that they could be used to model kidney development and susceptibility of the kidney tissue to therapeutic drug toxicity. The kidney structures also have the potential to facilitate further studies of how abnormalities occur as the human kidney develops in the uterus and to establish models of disease where they can be used to test new therapies.
“This new finding could hasten progress to model human disease, find new therapeutic agents, identify patient-specific susceptibility to toxicity of drugs and may one day result in replacement of human kidney tissue in patients with kidney disease from cells derived from that same patient,” said author Joseph V. Bonventre, chief of BWH’s Renal Division and Chief of BWH’s Division of Biomedical Engineering. “This approach is especially attractive because the tissues obtained would be ‘personalized’ and, because of their genetic identity to the patient from whom they were derived, this approach may ultimately lead to tissue replacement without the need for suppression of the immune system.” http://www.eurekalert.org/pub_releases/2015-10/bawh-ic101615.php
Recent Comments