Lighting the Way to Miniature devices

Spread the love
A schematic (left) and photograph (right) of a photonic dew point temperature sensor developed by Ji Fang Tao and co-workers, which works by detecting changes in the refraction of light as water molecules condense onto the device.

A schematic (left) and photograph (right) of a photonic dew point temperature sensor developed by Ji Fang Tao and co-workers, which works by detecting changes in the refraction of light as water molecules condense onto the device. (left) © 2015 IEEE. Reprinted, with permission, from Ref 1. (right) © 2016 A*STAR Institute of Microelectronics

Electromagnetic waves created on a layer of organic molecules could provide the perfect on-chip light source for future quantum communication systems. A team of scientists including researchers at Agency for Science, Technology and Research (A*STAR), Singapore, has captured tiny flashes of light from an ultrathin layer of organic molecules sandwiched between 2 electrodes that could replace lasers and LEDs as signal sources for future miniature, ultrafast quantum computing and light-based communication systems.

To investigate electromagnetic waves called plasmons, which skim along the interface between two materials, Nikodem Tomczak from A*STAR and colleagues collaborated with Christian A. Nijhuis from the National University of Singapore to construct a junction consisting of a layer of thiol molecules on a metal electrode and liquid gallium-indium alloy as a top electrode.

The team created plasmons by applying a voltage across the thiol layer. Although thiol is an insulator, the layer was thin enough for electrons to quantum tunnel between the electrodes, exciting plasmons on the thiol layer’s surface in the process. The plasmons then decayed into photons, tiny pulses of light that Tomczak and his colleagues were able to detect. “We were surprised that the light did not come from the whole junction, but instead just from very small spots that blink at different frequencies,” said Tomczak.

The team found that the light generated by the plasmons was polarized, and that both the polarization and the wavelength of the light varied with the voltage applied across the junction and the molecules used to form the organic layer.”The spots are diffraction-limited, polarized and their blinking follows power-law statistics,” said Tomczak. “We need further experiments to confirm, but it is very similar to emission from other single photon sources, such as quantum dots or nanodiamonds.”

Further evidence that the light is from plasmons decaying into a single photon came from Chu Hong Son and his team at the A*STAR Institute of High Performance Computing who modeled the spots as the product of the smallest possible source, a single dipole emitter, and achieved results consistent with the experimental observations. https://www.research.a-star.edu.sg/research/7483/lighting-the-way-to-new-sensors