Modified 3D printer + Frozen Water used to create 3D objects made of Graphene Oxide

Spread the love
3D graphene created by an international research team led by Unversity at Buffalo engineers. Credit: University at Buffalo.

3D graphene created by an international research team led by Unversity at Buffalo engineers. Credit: University at Buffalo.

The structures could be an important step toward making graphene commercially viable in electronics, medical diagnostic devices and other industries. Discovered in 2004, it is 1 million times thinner than a human hair, 300X stronger than steel and it’s the best known conductor of heat and electricity. These qualities could, among other things, make computers faster, batteries more powerful and solar panels more efficient. But the material is tough to manipulate beyond its 2D form.

Recently, scientists poured graphene oxide suspension, a gel-like form of the material, into freezing molds to create 3D objects. The process works, but only with simple structures that have limited commercial applications. Another option is to use a 3D printer. In this scenario, scientists typically mix graphene with a polymer or other thickening agent. This helps keep the structure from falling apart. But when the polymer is removed via thermal process, it damages the delicate structure.

A research team may have solved that problem by using a modified 3D printer and frozen water to create lattice-shaped cubes and a 3D truss with overhangs using graphene oxide. The structures could be an important step toward making graphene commercially viable in electronics, medical diagnostic devices and other industries. “Graphene is notoriously difficult to manipulate, but the structures we built show that it’s possible to control its shape in three-dimensional forms,” said A/ProfZhou.

In their experiments, the team mixed graphene oxide with water, then printed the lattice framework on a surface of -25°C. The graphene is sandwiched between the layers of frozen ice, which act as a structural support. After the process is completed, the lattice is dipped in liquid nitrogen, which helps form even stronger hydrogen bonds. The lattice is then placed in a freeze dryer, where the ice is changed into gas and removed. The end result is a complex, 3D structure made of graphene aerogel that retains its shape at room temperature.

“By keeping the graphene in a cold environment, we were able to ensure that it retained the shape we designed. This is an important step toward making graphene a commercially viable material,” said Dong Lin, assistant professor of industrial and manufacturing systems engineering at Kansas State University.

The researchers plan to build on their findings by investigating how to create aerogel structures formed of multiple materials. http://www.buffalo.edu/news/releases/2016/03/009.html