Researchers unleash Graphene ‘Tiger’ for more Efficient Optoelectronics

Spread the love
Image of one of the graphene-based devices Xu and colleagues worked with. Credit: Lei Wang

Image of one of the graphene-based devices Xu and colleagues worked with. Credit: Lei Wang

In traditional light-harvesting methods, energy from 1 photon only excites 1 electron or none depending on the absorber’s energy gap. The remaining energy is lost as heat. But a new article describe an approach to coax photons into stimulating multiple electrons. Their method exploits some surprising quantum-level interactions to give one photon multiple potential electron partners.

Wu and Xu in UW’s Dept of Materials Science & Engineering and the Det of Physics, made this surprising discovery using graphene.
The researchers took a single atom layer of graphene and sandwiched it between 2 thin layers of boron-nitride. Electrons do not flow easily within boron-nitride so it is an insulator.

When the graphene layer’s lattice is aligned with the layers of boron-nitride, a type of “superlattice” is created with properties allowing efficient optoelectronics that researchers had sought. These properties rely on quantum mechanics. Wu and Xu detected unique quantum regions within the superlattice known as Van Hove singularities. “These are regions of huge electron density of states, and they were not accessed in either the graphene or boron-nitride alone,” said Wu. “We only created these high electron density regions in an accessible way when both layers were aligned together.”

When energetic photons were directed to the superlattice, those Van Hove singularities were sites where one energized photon could transfer its energy to multiple electrons that are subsequently collected by electrodes. Within this superlattice one photon could “kick” as many as 5 electrons to flow as current.

With the discovery of collecting multiple electrons upon the absorption of one photon, researchers may be able to create highly efficient devices that could harvest light with a large energy profit. Future work would need to uncover how to organize the excited electrons into electrical current for optimizing the energy-converting efficiency and remove some of the more cumbersome properties of their superlattice, such as the need for a magnetic field. But they believe this efficient process between photons and electrons represents major progress.

“Graphene is a tiger with great potential for optoelectronics, but locked in a cage,” said Wu. “The singularities in this superlattice are a key to unlocking that cage and releasing graphene’s potential for light harvesting application.” http://www.washington.edu/news/2016/05/13/uw-researchers-unleash-graphene-tiger-for-more-efficient-optoelectronics/