Scientists have identified it’s best-known adhesion protein that it uses to attach to stomach sugars and evade the body’s attempts to ‘flush’ it away. It is estimated that 1 in 2 people have got it, though most won’t ever experience any problems. Even so, it is considered one of the most common bacterial infections worldwide and a leading cause of dyspepsia, peptic ulceration and gastric cancer.
Through unique evolutionary adaptations, H. pylori is able to evade the antiseptic effect of our stomach acid by hiding within the thick acid-resistant layer of mucus that coats the stomach wall. Once within the mucus layer, the bacterium latches onto sugars naturally found on the stomach wall using its adhesion proteins. This attachment is so effective that the bacterium can resist attempts by the body to ‘flush’ it away, allowing the pathogen to colonise with impunity.
But the game could be up for H. pylori. Using extremely powerful xrays, the scientists were able to study the interactions between the H. pylori adhesion protein BabA and Lewisb sugars of the gastric mucosa at the atomic level. They found that, right at its tip, BabA possesses a specific groove that enables it to securely attach to Lewisb using a network of H-bonds. If a few of the hydrogen bonds are disrupted, the network doesn’t function and binding can no longer occur. This insight into the molecular interactions required for adhesion is a promising lead for the development of new strategies for the treatment of H. pylori infections. They would try clearing H. pylori out of the stomach through dislodging the bacterium off the stomach wall using BabA:Lewisb inhibitors. Such novel strategies are needed to help treat H. pylori infections, which are globally gaining resistance to conventional antibiotic therapies.
Naim said: “Because BabA is unique to H. pylori, we can specifically target, and hopefully eradicate, this bacterium without affecting the other good bacteria in our normal flora.
Recent Comments