Scientists find Microbes on the Skin of Mice promote tissue Healing, Immunity

Spread the love
Highlights • Non-classical MHC class I molecules promote homeostatic immunity to the microbiota • Commensal-specific T cells express immunoregulatory and tissue repair signatures • Commensal-specific T cells accelerate wound closure

Highlights • Non-classical MHC class I molecules promote homeostatic immunity to the microbiota • Commensal-specific T cells express immunoregulatory and tissue repair signatures • Commensal-specific T cells accelerate wound closure

Insights may inform wound management techniques. Beneficial bacteria on the skin of lab mice work with the animals’ immune systems to defend against disease-causing microbes and accelerate wound healing, according to new research from scientists at the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health. Researchers say untangling similar mechanisms in humans may improve approaches to managing skin wounds and treating other damaged tissues.

Like humans and other mammals, mice are inhabited by the microbiome. NIAID scientists led by Yasmine Belkaid, Ph.D., chief of the Mucosal Immunology Section of NIAID’s Laboratory of Parasitic Diseases, observed the reaction of mouse immune cells to Staphylococcus epidermidis, a bacterium regularly found on human skin that does not normally cause disease. To their surprise, immune cells recognized S. epidermidis using evolutionarily ancient molecules called non-classical MHC molecules, which led to the production of unusual T cells with genes associated with tissue healing and antimicrobial defense. In contrast, immune cells recognize disease-causing bacteria with classical MHC molecules, which lead to the production of T cells that stoke inflammation.

Researchers then took skin biopsies from two groups of mice – one group that had been colonized by S. epidermidis and another that had not. Over five days, the group that had been exposed to the beneficial bacteria experienced more tissue repair at the wound site and less evidence of inflammation. Dr. Belkaid’s team plans to next probe whether non-classical MHC molecules recognize friendly microbes on the skin of other mammals, including humans, and similarly benefit tissue repair. Eventually, mimicking the processes initiated by the microbiome may allow clinicians to accelerate wound healing and prevent dangerous infections. https://www.niaid.nih.gov/news-events/nih-scientists-find-microbes-skin-mice-promote-tissue-healing-immunity
http://www.sciencedirect.com/science/article/pii/S0092867417315131