Self-Assembling material that Grows, Changes Shape could lead to Artificial Arteries

Spread the love
The protein/peptide system can grow on demand by simply displacing the interface. Credit: QMUL

The protein/peptide system can grow on demand by simply displacing the interface. Credit: QMUL

Researchers have developed a way of assembling organic molecules into complex tubular tissue-like structures without the use of moulds or techniques like 3-D printing. The study describes how peptides and proteins can be used to create materials that exhibit dynamic behaviors found in biological tissues like growth, morphogenesis, and healing.

The method uses solutions of peptide and protein molecules that, upon touching each other, self-assemble to form a dynamic tissue at the point at which they meet. As the material assembles itself it can be easily guided to grow into complex shapes.

This discovery could lead to the engineering of tissues like veins, arteries, or even the blood-brain barrier, which would allow scientists to study diseases such as Alzheimer’s with a high level of similarity to the real tissue, which is currently impossible. The technique could also contribute to the creation of better implants, complex tissues, or more effective drug screening methods.

“What is most exciting about this discovery is the possibility for us to use peptides and proteins as building-blocks of materials with the capacity to controllably grow or change shape, solely by self-assembly. http://www.eurekalert.org/pub_releases/2015-09/qmuo-smt092415.php