Why has the sea ice cover surrounding Antarctica been increasing slightly, in sharp contrast to the drastic loss of sea ice occurring in the Arctic Ocean? A new NASA-led study finds the geology of Antarctica and the Southern Ocean are responsible.
A NASA/NOAA/university team led by Son Nghiem of NASA’s Jet Propulsion Laboratory, Pasadena, California, used satellite radar, sea surface temperature, land form and bathymetry (ocean depth) data to study the physical processes and properties affecting Antarctic sea ice. They found that 2 persistent geological factors—the topography of Antarctica and the depth of the ocean surrounding it—are influencing winds and ocean currents, respectively, to drive the formation and evolution of Antarctica’s sea ice cover and help sustain it.
“Our study provides strong evidence that the behavior of Antarctic sea ice is entirely consistent with the geophysical characteristics found in the southern polar region, which differ sharply from those present in the Arctic,” said Nghiem.
Antarctic sea ice cover is dominated by first-year (seasonal) sea ice. Each year, the sea ice reaches its maximum extent around the frozen continent in September and retreats to about 17% of that extent in February. Since the late 1970s, its extent has been relatively stable, increasing just slightly; however, regional differences are observed.
Nghiem and his team analyzed radar data from NASA’s QuikScat satellite from 1999 to 2009 to trace the paths of Antarctic sea ice movements and map its different types. They focused on the 2008 growth season, a year of exceptional seasonal variability in Antarctic sea ice coverage. Their analyses revealed that as sea ice forms and builds up early in the sea ice growth season, it gets pushed offshore and northward by winds, forming a protective shield of older, thicker ice that circulates around the continent. The persistent winds, which flow downslope off the continent and are shaped by Antarctica’s topography, pile ice up against the massive ice shield, enhancing its thickness. This band of ice, which varies in width from roughly 62 to 620 miles encapsulates and protects younger, thinner ice in the ice pack behind it from being reduced by winds and waves.
The team also used QuikScat radar data to classify the different types of Antarctic sea ice. Older, thicker sea ice returns a stronger radar signal than younger, thinner ice does. They found the sea ice within the protective shield was older and rougher (due to longer exposure to wind and waves), and thicker (due to more ice growth and snow accumulation). As sea ice cover expands and ice drifts away from the continent, areas of open water form behind it on the sea surface, creating “ice factories” conducive to sea ice growth.
To address the question of how the Southern Ocean maintains this great sea ice shield, the team combined sea surface temperature data from multiple satellites with a recently available bathymetric chart of the depth of the world’s oceans. Sea surface temperature data reveal that at the peak of ice growth season, the boundary of the ice shield remains behind a 30F/ -1C temperature line surrounding Antarctica. This temperature line corresponds with the southern Antarctic Circumpolar Current front, a boundary that separates the circulation of cold and warm waters around Antarctica. The team theorized that the location of this front follows the underwater bathymetry.
When they plotted the bathymetric data against the ocean temperatures, the pieces fit together like a jigsaw puzzle. Pronounced seafloor features strongly guide the ocean current and correspond closely with observed regional Antarctic sea ice patterns. Eg, the current stays near Bouvet Island, located 1,000 miles from the nearest land, where 3 tectonic plates join to form seafloor ridges. Off the coast of East Antarctica, the -1C sea surface temperature lines closely bundle together as they cross the Kerguelen Plateau (a submerged microcontinent that broke out of the ancient Gondwana supercontinent), through a deep channel called the Fawn Trough. But those lines spread apart over adjacent deep ocean basins, where seafloor features are not pronounced. Off the West Antarctica coast, the deep, smooth seafloor loses its grip over the current, allowing sea ice extent to decrease and resulting in large year-to-year variations.
http://www.jpl.nasa.gov/news/news.php?feature=651
Recent Comments