2D Material tagged posts

Odds are good for Unique 2D Compound

The polarized light emission from a 7-layer cesium, bismuth and iodine triangle developed at Rice University, under circularly polarized excitation, shows the valleytronics mechanism in action. The inset shows the electronic state written and read optically in a valleytronic memory. Courtesy of the Lou Group

Perovskites show potential for valleytronics applications. Engineers at Rice University and Texas A&M University have found a 2D material that could make computers faster and more energy-efficient.

Their material is a derivative of perovskite — a crystal with a distinctive structure — that has the surprising ability to enable the valleytronics phenomenon touted as a possible platform for information processing and storage.

The lab of materials scientist Jun Lou of Rice’s Brow...

Read More

Scalable System for Producing promising 2D Material

ransmission electron microscopic image of a type of MXene material made via a new method that does not include water.

For more than a decade, two-dimensional nanomaterials, such as graphene, have been touted as the key to making better microchips, batteries, antennas and many other devices. But a significant challenge of using these atom-thin building materials for the technology of the future is ensuring that they can be produced in bulk quantities without losing their quality. For one of the most promising new types of 2D nanomaterials, MXenes, that’s no longer a problem. Researchers at Drexel University and the Materials Research Center in Ukraine have designed a system that can be used to make large quantities of the material while preserving its unique properties.

Proving th...

Read More

Novel Nano Material for Quantum Electronics

Formation of the layered conductive magnet CrCl2(pyrazine)2 through redox-active coordination chemistry. Nature Chemistry, 2018; DOI: 10.1038/s41557-018-0107-7

Formation of the layered conductive magnet CrCl2(pyrazine)2 through redox-active coordination chemistry. Nature Chemistry, 2018; DOI: 10.1038/s41557-018-0107-7

An international team led by Assistant Professor Kasper Steen Pedersen, DTU Chemistry, has synthesized a novel nano material with electrical and magnetic properties making it suitable for future quantum computers and other applications in electronics.

Chromium-Chloride-Pyrazine (chemical formula CrCl2(pyrazine)2) is a layered material, which is a precursor for a so-called 2D material. In principle, a 2D material has a thickness of just a single molecule and this often leads to properties very different from those of the same material in a normal 3D version. Not least will the electrical properties differ...

Read More

Physicist discovers New 2D Material that could Upstage Graphene, advancing digital technology

The atoms in the new structure are arranged in a hexagonal pattern as in graphene, but that is where the similarity ends. The three elements forming the new material all have different sizes; the bonds connecting the atoms are also different. As a result, the sides of the hexagons formed by these atoms are unequal, unlike in graphene. Credit: Madhu Menon

The atoms in the new structure are arranged in a hexagonal pattern as in graphene, but that is where the similarity ends. The three elements forming the new material all have different sizes; the bonds connecting the atoms are also different. As a result, the sides of the hexagons formed by these atoms are unequal, unlike in graphene. Credit: Madhu Menon

Truly flat and extremely stable, the material is made up of light, inexpensive and earth abundant elements. The new material is made up of silicon, boron and nitrogen. “We used simulations to see if the bonds would break or disintegrate – it didn’t happen,” said Madhu Menon,UK Center for Computational Sciences. “We heated the material up to 1,000 degree Celsius and it still didn’t break.”

While graphene is touted as being the world’s stron...

Read More