aerodynamic drag back-reaction tagged posts

Spontaneous ‘Dust Traps:’ Astronomers discover a missing link in planet formation

1. Stages of the formation mechanism for dust traps. The central star is depicted as yellow, surrounded by the protoplanetary disk, here shown in blue. The dust grains make up the band running through the disk. In the first stage, the dust grains grown in size, and move inwards towards the central star. The now pebble-sized larger grains (in the second panel) then pile up and slow down, and in the third stage the gas is pushed outwards by the back-reaction, creating regions where dust accumulates, the so-called dust traps. The traps then allow the pebbles to aggregate to form planetesimals, and eventually planet-sized worlds. Credit: © Volker Schurbert. Click for a full size image 2. An image of a protoplanetary disk, made using results from the new model, after the formation of a spontaneous dust trap, visible as a bright dust ring. Gas is depicted in blue and dust in red. Credit: Jean-Francois Gonzalez. Click for a full size image

1. Stages of the formation mechanism for dust traps. The central star is depicted as yellow, surrounded by the protoplanetary disk, here shown in blue. The dust grains make up the band running through the disk. In the first stage, the dust grains grown in size, and move inwards towards the central star. The now pebble-sized larger grains (in the second panel) then pile up and slow down, and in the third stage the gas is pushed outwards by the back-reaction, creating regions where dust accumulates, the so-called dust traps. The traps then allow the pebbles to aggregate to form planetesimals, and eventually planet-sized worlds. Credit: © Volker Schurbert. Click for a full size image
2...

Read More