AI tagged posts

Microsoft’s Small Language Model Outperforms Larger Models on Standardized Math tests

Grade School Math
Credit: Deepak Gautam from Pexels

A small team of AI researchers at Microsoft reports that the company’s Orca-Math small language model outperforms other, larger models on standardized math tests. The group has published a paper on the arXiv preprint server describing their testing of Orca-Math on the Grade School Math 8K (GSM8K) benchmark and how it fared compared to well-known LLMs.

Many popular LLMs such as ChatGPT are known for their impressive conversational skills—less well known is that most of them can also solve math word problems. AI researchers have tested their abilities at such tasks by pitting them against the GSM8K, a dataset of 8,500 grade-school math word problems that require multistep reasoning to solve, along with their correct answers.

In this new study, th...

Read More

AI finds Key Signs that Predict Patient Survival Across Dementia Types

Ai finds key signs that predict patient survival across dementia types
Survival Analysis Based On Dementia Subtypes. Credit: Zhang & Song et al., Communications Medicine

Researchers at the Icahn School of Medicine at Mount Sinai and others have harnessed the power of machine learning to identify key predictors of mortality in dementia patients.

The study, published in the February 28 online issue of Communications Medicine, addresses critical challenges in dementia care by pinpointing patients at high risk of near-term death and uncovers the factors that drive this risk.

Unlike previous studies that focused on diagnosing dementia, this research delves into predicting patient prognosis, shedding light on mortality risks and contributing factors in various kinds of dementia.

Dementia has emerged as a major cause of death in societies with increasin...

Read More

Researchers leverage AI to Develop Early Diagnostic Test for Ovarian Cancer

Micrograph of a mucinous ovarian tumor (Photo National Institutes of Health)
Micrograph of a mucinous ovarian tumor (Photo National Institutes of Health)

For over three decades, a highly accurate early diagnostic test for ovarian cancer has eluded physicians. Now, scientists in the Georgia Tech Integrated Cancer Research Center (ICRC) have combined machine learning with information on blood metabolites to develop a new test able to detect ovarian cancer with 93 percent accuracy among samples from the team’s study group.

John McDonald, professor emeritus in the School of Biological Sciences, founding director of the ICRC, and the study’s corresponding author, explains that the new test’s accuracy is better in detecting ovarian cancer than existing tests for women clinically classified as normal, with a particular improvement in detecting early-stage ovarian d...

Read More

When Lab-Trained AI Meets the Real World, ‘Mistakes can Happen’

AI and pathology
When humans examine tissue on slides, they can only look at a limited field within the microscope, then move to a new field and so on.

Tissue contamination distracts AI models from making accurate real-world diagnoses. Human pathologists are extensively trained to detect when tissue samples from one patient mistakenly end up on another patient’s microscope slides (a problem known as tissue contamination). But such contamination can easily confuse artificial intelligence (AI) models, which are often trained in pristine, simulated environments, reports a new Northwestern Medicine study.

“We train AIs to tell ‘A’ versus ‘B’ in a very clean, artificial environment, but, in real life, the AI will see a variety of materials that it hasn’t trained on...

Read More