artificial neurons tagged posts

Speaking the Same Language: How Artificial Neurons Mimic Biological Neurons

Speaking the same language: How artificial neurons mimic biological neurons
A biological neuron and the OAN. a, Simplified schematic of a biological neuron. Action potentials, the basic cell-to-cell communication events, are generated by rapid transmembrane ion exchanges through ion channels, and they propagate across the axon. In myelinated cells, alternate myelin/non-myelin domains (nodes of Ranvier) contribute to the fast and long-range action potential propagation. Biological neurons are immersed in an electrochemical environment, such as an aqueous electrolyte. This extracellular space is a common reservoir containing various biological carriers for signaling and processing (ions, biomolecules and so on). Noise is also present in this environment. Ionic channels on the membrane endow neurons with ionic/molecular specificity and recognition. b, Circuit diagra...
Read More

New study allows Brain and Artificial Neurons to Link up over the Web

Virtual Lab

Research on novel nanoelectronics devices has enabled brain neurons and artificial neurons to communicate with each other over the Internet. Brain functions are made possible by circuits of spiking neurons, connected together by microscopic, but highly complex links called synapses. In this new study, published in the scientific journal Nature Scientific Reports, the scientists created a hybrid neural network where biological and artificial neurons in different parts of the world were able to communicate with each other over the internet through a hub of artificial synapses made using cutting-edge nanotechnology. This is the first time the three components have come together in a unified network.

During the study, researchers based at the University of Padova in Italy cultivate...

Read More

Step towards Light-based, Brain-like Computing Chip

Schematic illustration of a light-based, brain-inspired chip. By mimicking biological neuronal systems, photonic neuromorphic processors provide a promising platform to tackle challenges in machine learning and pattern recognition.© Johannes Feldman

Scientists have succeeded in developing a piece of hardware which could pave the way for creating computers resembling the human brain. They produced a chip containing a network of artificial neurons that works with light and can imitate neurons and their synapses. This network is able to ‘learn’ information and use this as a basis for computing. The approach could be used later in many different fields for evaluating patterns in large quantities of data.

The researchers were able to demonstrate, that such an optical neurosynaptic network...

Read More