Atomic Clock tagged posts

Dialing in the temperature needed for precise nuclear timekeeping

For decades, atomic clocks have been the pinnacle of precision timekeeping, enabling GPS navigation, cutting-edge physics research, and tests of fundamental theories. But researchers at JILA, led by JILA and NIST Fellow and University of Colorado Boulder physics professor Jun Ye, in collaboration with the Technical University of Vienna, are pushing beyond atomic transitions to something potentially even more stable: a nuclear clock.

This clock could revolutionize timekeeping by using a uniquely low-energy transition within the nucleus of a thorium-229 atom. This transition is less sensitive to environmental disturbances than modern atomic clocks and has been proposed for tests of fundamental physics beyond the Standard Model.

This idea isn’t new in Ye’s laboratory...

Read More

Atomic Clock Comparison Confirms Key assumptions of ‘Einstein’s Elevator’

This image, taken with the Wide Field Camera 3 (WFC3) and the Advanced Camera for Surveys (ACS), both installed on the NASA/ESA Hubble Space Telescope, shows the peculiar galaxy NGC 3256. The galaxy is about 100 million light-years from Earth and is the result of a past galactic merger, which created its distorted appearance. As such, NGC 3256 provides an ideal target to investigate starbursts that have been triggered by galaxy mergers. Credit: ESA/Hubble, NASA

This image, taken with the Wide Field Camera 3 (WFC3) and the Advanced Camera for Surveys (ACS), both installed on the NASA/ESA Hubble Space Telescope, shows the peculiar galaxy NGC 3256. The galaxy is about 100 million light-years from Earth and is the result of a past galactic merger, which created its distorted appearance. As such, NGC 3256 provides an ideal target to investigate starbursts that have been triggered by galaxy mergers. Credit: ESA/Hubble, NASA

 
By comparing different types of remote atomic clocks, physicists at the National Institute of Standards and Technology (NIST) have performed the most accurate test ever of a key principle underlying Albert Einstein’s famous theory of general relativity, which describes how gravity relates to space and time...
Read More

Atomic Clock mimics long-sought synthetic Magnetic State

JILA physicists used a strontium lattice atomic clock to simulate magnetic properties long sought in solid materials. The atoms are confined in an optical lattice, shown as an array of disk-shaped traps set at shallow depths. A laser (yellow wave) probes the atoms to couple the atoms' spins and motions. The two atomic spin states are illustrated in red and blue. Credit: Steven Burrows and Ye Group/JILA

JILA physicists used a strontium lattice atomic clock to simulate magnetic properties long sought in solid materials. The atoms are confined in an optical lattice, shown as an array of disk-shaped traps set at shallow depths. A laser (yellow wave) probes the atoms to couple the atoms’ spins and motions. The two atomic spin states are illustrated in red and blue. Credit: Steven Burrows and Ye Group/JILA

JILA physicists have caused atoms in a gas to behave as if they possess unusual magnetic properties long sought in harder-to-study solid materials. Representing a novel “off-label” use for atomic clocks, the research could lead to the creation of new materials for applications such as “spintronic” devices and quantum computers...

Read More