Auroras tagged posts

Jupiter’s X-ray Auroras Pulse Independently

Jupiter’s south pole, as seen by NASA’s Juno spacecraft from an altitude of 32,000 miles (52,000 kilometers). Credit: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

Jupiter’s south pole, as seen by NASA’s Juno spacecraft from an altitude of 32,000 miles (52,000 kilometers). Credit: NASA/JPL-Caltech/SwRI/MSSS/Betsy Asher Hall/Gervasio Robles

Jupiter’s intense northern and southern lights pulse independently of each other according to new UCL-led research using ESA’s XMM-Newton and NASA’s Chandra X-ray observatories. The study found that very high-energy X-ray emissions at Jupiter’s south pole consistently pulse every 11 minutes. Meanwhile those at the north pole are erratic: increasing and decreasing in brightness, independent of the south pole.

This behaviour is distinct from Earth’s north and south auroras which broadly mirror each other in activity...

Read More

Juno mission to Jupiter delivers 1st Science Results

The SwRI-led UVS spectrograph images Jupiter’s massive auroras. Collected during Juno’s third orbit around the gas giant, this false-color image is inset with an image of Earth’s south pole aurora, approximately to scale, collected September 11, 2005. The streaky colors away from the Jovian auroral region are associated with penetrating electrons.

1. The SwRI-led Juno mission discovered that Jupiter’s signature bands disappear near its poles. This JunoCam image, processed by citizen scientist Bruce Lemons, show a chaotic scene of swirling storms up to the size of Mars against a bluish backdrop.
Credit Line: Image Courtesy of NASA/SwRI
2. The SwRI-led UVS spectrograph images Jupiter’s massive auroras. Collected during Juno’s third orbit around the gas giant, this false-color image is inset with an image of Earth’s south pole aurora, approximately to scale, collected September 11, 2005. The streaky colors away from the Jovian auroral region are associated with penetrating electrons.

King of the planets even more exotic than expected. NASA’s Juno mission, led by Southwest Research Institute’s Dr...

Read More

NASA’s THEMIS sees Auroras move to the rhythm of Earth’s Magnetic field

An artist's rendering (not to scale) of a cross-section of the magnetosphere, with the solar wind on the left in yellow and magnetic field lines emanating from the Earth in blue. The five THEMIS probes were well-positioned to directly observe one particular magnetic field line as it oscillated back and forth roughly every six minutes. In this unstable environment, electrons in near-Earth space, depicted as white dots, stream rapidly down magnetic field lines towards Earth's poles. There, they interact with oxygen and nitrogen particles in the upper atmosphere, releasing photons and brightening a specific region of the aurora. Credit: Emmanuel Masongsong/UCLA EPSS/NASA

An artist’s rendering (not to scale) of a cross-section of the magnetosphere, with the solar wind on the left in yellow and magnetic field lines emanating from the Earth in blue. The five THEMIS probes were well-positioned to directly observe one particular magnetic field line as it oscillated back and forth roughly every six minutes. In this unstable environment, electrons in near-Earth space, depicted as white dots, stream rapidly down magnetic field lines towards Earth’s poles. There, they interact with oxygen and nitrogen particles in the upper atmosphere, releasing photons and brightening a specific region of the aurora. Credit: Emmanuel Masongsong/UCLA EPSS/NASA

For the first time, scientists have directly mapped Earth’s fluctuating magnetic field and resulting electrical currents to...

Read More

Space Mission first to observe key Interaction between Magnetic fields of Earth and sun

This artist's rendition shows the four identical MMS spacecraft flying near the sun-facing boundary of Earth's magnetic field (blue wavy lines). The MMS mission has revealed the clearest picture yet of the process of magnetic reconnection between the magnetic fields of Earth and the sun -- a driving force behind space weather, solar flares and other energetic phenomena. Credit: NASA

This artist’s rendition shows the four identical MMS spacecraft flying near the sun-facing boundary of Earth’s magnetic field (blue wavy lines). The MMS mission has revealed the clearest picture yet of the process of magnetic reconnection between the magnetic fields of Earth and the sun — a driving force behind space weather, solar flares and other energetic phenomena. Credit: NASA

A new study provides the first major results of NASA’s Magnetospheric Multiscale (MMS) mission. The paper describes the first direct and detailed observation of magnetic reconnection, which occurs when 2 opposing magnetic field lines break and reconnect with each other, releasing massive amounts of energy. The discovery is a major milestone in understanding magnetism and space weather.

Evidence suggests reconnec...

Read More