biomedical devices tagged posts

A Band-Aid for the Heart? New 3D Printing Method makes this, and much more, possible

A new biomaterial adhered to a porcine heart
Laboratory tests show this 3D printed material molds and sticks to organs. Pictured is a porcine heart.

In the quest to develop life-like materials to replace and repair human body parts, scientists face a formidable challenge: Real tissues are often both strong and stretchable and vary in shape and size.

A CU Boulder-led team, in collaboration with researchers at the University of Pennsylvania, has taken a critical step toward cracking that code. They’ve developed a new way to 3D print material that is at once elastic enough to withstand a heart’s persistent beating, tough enough to endure the crushing load placed on joints, and easily shapable to fit a patient’s unique defects.

Better yet, it sticks easily to wet tissue.

Their breakthrough, described in the Aug...

Read More

Implantable Transmitter provides Wireless option for Biomedical devices

A Purdue University team developed a fully implantable transmitter chip for wireless sensor nodes and biomedical devices. (Image provided)

Purdue University innovators are working on inventions to use micro-chip technology in implantable devices and other wearable products such as smart watches to improve biomedical devices, including those used to monitor people with glaucoma and heart disease.

The Purdue team developed a fully implantable radio-frequency transmitter chip for wireless sensor nodes and biomedical devices. The research is published in the journal IEEE Transactions on Circuits and Systems II. The transmitter chip consumes lowest amount of energy per digital bit published to date.

The transmitter works in a similar fashion to communication technology in mobile phone...

Read More