bioplastics tagged posts

New Biodegradable Plastics are Compostable in your Backyard

A person working at a lab bench. The person is holding a tray of green powder and is scooping the powder into a metal mold shaped like the UW logo.
Mallory Parker, UW materials science and engineering doctoral student, adds spirulina powder to a UW logo mold. Once this mold goes in the hot-press, it will generate a UW logo-shaped piece of plastic.Mark Stone/University of Washington

We use plastics in almost every aspect of our lives. These materials are cheap to make and incredibly stable. The problem comes when we’re done using something plastic—it can persist in the environment for years. Over time, plastic will break down into smaller fragments, called microplastics, that can pose significant environmental and health concerns.

The best-case solution would be to use bio-based plastics that biodegrade instead, but many of those bioplastics are not designed to degrade in backyard composting conditions...

Read More

Light-Powered Nano-organisms consume CO2, create Eco-friendly Plastics and Fuels

Microbes
A gram of biodegradable plastic created by nanobio-hybrid microbes developed by CU Boulder engineers. Photo: Nagpal Lab / University of Colorado Boulder 

University of Colorado Boulder researchers have developed nanobio-hybrid organisms capable of using airborne carbon dioxide and nitrogen to produce a variety of plastics and fuels, a promising first step toward low-cost carbon sequestration and eco-friendly manufacturing for chemicals.

By using light-activated quantum dots to fire particular enzymes within microbial cells, the researchers were able to create “living factories” that eat harmful CO2 and convert it into useful products such as biodegradable plastic, gasoline, ammonia and biodiesel.

“The innovation is a testament to the power of biochemical processes,” said Prasha...

Read More

Eggshell Nanoparticles could lead to Expanded use of Biodegradable Bioplastic in Packaging materials

Adding eggshell nanoparticles to a bioplastic (shown above) increases the strength and flexibility of the material, potentially making it more attractive for use in the packaging industry. Credit: Vijaya Rangari/Tuskegee University

Adding eggshell nanoparticles to a bioplastic (shown above) increases the strength and flexibility of the material, potentially making it more attractive for use in the packaging industry. Credit: Vijaya Rangari/Tuskegee University

“We’re breaking eggshells down into their most minute components and then infusing them into a special blend of bioplastics that we have developed,” says Vijaya K. Rangari, Ph.D. “These nano-sized eggshell particles add strength to the material and make them far more flexible than other bioplastics on the market. We believe that these traits – along with its biodegradability in the soil – could make this eggshell bioplastic a very attractive alternative packaging material.”

Worldwide, manufacturers produce about 300 million tons of plastic annually...

Read More