Brain Tissue on a Chip tagged posts

Low Gravity in Space Travel found to Weaken and Disrupt Normal Rhythm in Heart Muscle Cells

Heart tissues within one of the launch-ready chambers, held by two hands.
Heart tissues within one of the launch-ready chambers.
Credit:Jonathan Tsui

Johns Hopkins Medicine scientists who arranged for 48 human bioengineered heart tissue samples to spend 30 days at the International Space Station report evidence that the low gravity conditions in space weakened the tissues and disrupted their normal rhythmic beats when compared to Earth-bound samples from the same source.

The scientists said the heart tissues “really don’t fare well in space,” and over time, the tissues aboard the space station beat about half as strongly as tissues from the same source kept on Earth.

The findings, they say, expand scientists’ knowledge of low gravity’s potential effects on astronauts’ survival and health during long space missions, and they may serve as models for study...

Read More

Brain Tissue on a Chip Achieves Voice Recognition

 Brain tissue on a chip achieves voice recognition
Brainoware with unsupervised learning for AI computing. a, Schematic of an adaptive reservoir computing framework using Brainoware. b, Schematic of the paradigm of Brainoware setup that mounts a single brain organoid onto a high-density MEA for receiving inputs and sending outputs. c, Whole-mount immunostaining of cortical organoids showing complex three-dimensional neuronal networks with various brain cell identities (for example, mature neuron, MAP2; astrocyte GFAP; neurons of early differentiation stage, TuJ1; neural progenitor cells, SOX2). d, Schematic demonstrating the hypothesized, unsupervised learning of Brainoware by reshaping the BNN during training, and the inhibition of unsupervised learning after synaptic plasticity is blocked. Scale bar, 100 μm. Credit: Nature Elect...
Read More