Cepheid variables tagged posts

Hubble and Gaia team up to fuel Cosmic Conundrum

Using two of the world's most powerful space telescopes -- NASA's Hubble and ESA's Gaia -- astronomers have made the most precise measurements to date of the universe's expansion rate. This is calculated by gauging the distances between nearby galaxies using special types of stars called Cepheid variables as cosmic yardsticks. By comparing their intrinsic brightness as measured by Hubble, with their apparent brightness as seen from Earth, scientists can calculate their distances. Gaia further refines this yardstick by geometrically measuring the distances to Cepheid variables within our Milky Way galaxy. This allowed astronomers to more precisely calibrate the distances to Cepheids that are seen in outside galaxies. Credit: NASA, ESA, and A. Feild (STScI)

Using two of the world’s most powerful space telescopes — NASA’s Hubble and ESA’s Gaia — astronomers have made the most precise measurements to date of the universe’s expansion rate. This is calculated by gauging the distances between nearby galaxies using special types of stars called Cepheid variables as cosmic yardsticks. By comparing their intrinsic brightness as measured by Hubble, with their apparent brightness as seen from Earth, scientists can calculate their distances. Gaia further refines this yardstick by geometrically measuring the distances to Cepheid variables within our Milky Way galaxy. This allowed astronomers to more precisely calibrate the distances to Cepheids that are seen in outside galaxies. Credit: NASA, ESA, and A. Feild (STScI)

Using the power and synergy of two s...

Read More

Galaxy Quakes could improve Hunt for Dark Matter

These images of the Milky Way show the distribution of gas, at left, compared to the distribution of stars, at right, after the dwarf satellite disrupts the galaxy. Credit: Sukanya Chakrabarti/Rochester Institute of Technology

These images of the Milky Way show the distribution of gas, at left, compared to the distribution of stars, at right, after the dwarf satellite disrupts the galaxy. Credit: Sukanya Chakrabarti/Rochester Institute of Technology

A trio of brightly pulsating stars at the outskirts of the Milky Way is racing away from the galaxy and may confirm a method for detecting dwarf galaxies dominated by dark matter and explain ripples in the outer disk of the galaxy. This new method to characterize dark matter marks the first real application of galactoseismology. Just as seismologists analyze waves to infer properties about Earth’s interior, Sukanya Chakrabarti, assistant professor at Rochester Institute of Technology, uses waves in the galactic disk to map the interior structure and mass of galaxies.

Read More