Ceres Craters tagged posts

Puzzling Paucity of Large Craters on Dwarf Planet Ceres

The top of this false-color image includes a grazing view of Kerwan, Ceres' largest impact crater. This well-preserved crater is 280 km (175 miles) wide and is well defined with red-yellow high-elevation rims and a deep central depression shown in blue. Kerwan gradually degrades as one moves toward the center of the image into an 800-km (500-mile) wide, 4-km (2.5-mile) deep depression (in green) called Vendimia Planitia. This depression is possibly what's left of one of the largest craters from Ceres' earliest collisional history. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

The top of this false-color image includes a grazing view of Kerwan, Ceres’ largest impact crater. This well-preserved crater is 280 km (175 miles) wide and is well defined with red-yellow high-elevation rims and a deep central depression shown in blue. Kerwan gradually degrades as one moves toward the center of the image into an 800-km (500-mile) wide, 4-km (2.5-mile) deep depression (in green) called Vendimia Planitia. This depression is possibly what’s left of one of the largest craters from Ceres’ earliest collisional history. Credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA

Dwarf planet may continuously refresh its surface...

Read More

Dawn maps Ceres Craters where Ice can accumulate

At the poles of Ceres, scientists have found craters that are permanently in shadow (indicated by blue markings). Such craters are called "cold traps" if they remain below about minus 240 degrees Fahrenheit (minus 151 degrees Celsius). These shadowed craters may have been collecting ice for billions of years because they are so cold. This image was created using data from NASA's Dawn spacecraft. Credit: NASA/JPL-Caltech/Goddard

At the poles of Ceres, scientists have found craters that are permanently in shadow (indicated by blue markings). Such craters are called “cold traps” if they remain below about minus 240 degrees Fahrenheit (minus 151 degrees Celsius). These shadowed craters may have been collecting ice for billions of years because they are so cold. This image was created using data from NASA’s Dawn spacecraft. Credit: NASA/JPL-Caltech/Goddard

Scientists with NASA’s Dawn mission have identified permanently shadowed regions on the dwarf planet Ceres. Most of these areas likely have been cold enough to trap water ice for a billion years, suggesting that ice deposits could exist there now. “The conditions on Ceres are right for accumulating deposits of water ice,” said N Schorghofer...

Read More