Clean Energy tagged posts

Converting Temperature Fluctuations into Clean Energy with Novel Nanoparticles and Heating Strategy

Illustration of potential applications of combining pyroelectric materials and the localized thermo-plasmonic effect of noble metal nanomaterials. Photo credit: Dr Lei Dangyuan’s group / City University of Hong Kong

Pyroelectric catalysis (pyro-catalysis) can convert environmental temperature fluctuations into clean chemical energy, like hydrogen. However, compared with the more common catalysis strategy, such as photocatalysis, pyro-catalysis is inefficient due to slow temperature changes in the ambient environment...

Read More

Hydrogen Production Method opens up Clean Energy possibilities

Postdoctoral researcher Jamie Kee and Professor Su Ha and the novel reactor they developed to produce pure compressed hydrogen.

A new energy-efficient way to produce hydrogen gas from ethanol and water has the potential to make clean hydrogen fuel a more viable alternative for gasoline to power cars.

Washington State University researchers used the ethanol and water mixture and a small amount of electricity in a novel conversion system to produce pure compressed hydrogen. The innovation means that hydrogen could be made on-site at fueling stations, so only the ethanol solution would have to be transported. It is a major step in eliminating the need to transport high-pressure hydrogen gas, which has been a major stumbling block for its use as a clean energy fuel.

“This is a new wa...

Read More

Alcator C-Mod Tokamak Nuclear Fusion reactor sets World Record on final day of operation

The interior of the fusion experiment Alcator C-Mod at MIT recently broke the plasma pressure record for a magnetic fusion device. The interior of the donut-shaped device confines plasma hotter than the interior of the sun, using high magnetic fields. Postdoc Ted Golfinopoulos, shown here, is performing maintenance between plasma campaigns. Photo: Bob Mumgaard/Plasma Science and Fusion Center

The interior of the fusion experiment Alcator C-Mod at MIT recently broke the plasma pressure record for a magnetic fusion device. The interior of the donut-shaped device confines plasma hotter than the interior of the sun, using high magnetic fields. Postdoc Ted Golfinopoulos, shown here, is performing maintenance between plasma campaigns. Photo: Bob Mumgaard/Plasma Science and Fusion Center

On Friday, Sept. 30, at 9:25 p.m. EDT, scientists and engineers at MIT’s Plasma Science and Fusion Center made a leap forward in the pursuit of clean energy. The team set a new world record for plasma pressure in the Institute’s Alcator C-Mod tokamak nuclear fusion reactor...

Read More

Clean Energy generated using Bacteria-Powered Solar panel

These are nine biological-solar (bio-solar) cells connected into a bio-solar panel. The panel has generated the most wattage of any existing small-scale bio-solar cells - 5.59 microwatts Credit: Seokheun "Sean" Choi

These are nine biological-solar (bio-solar) cells connected into a bio-solar panel. The panel has generated the most wattage of any existing small-scale bio-solar cells – 5.59 microwatts Credit: Seokheun “Sean” Choi

For the 1st time ever, researchers connected 9 biological-solar (bio-solar) cells into a bio-solar panel. Then they continuously produced electricity from the panel and generated the most wattage of any existing small-scale bio-solar cells – 5.59 microwatts. “Once a functional bio-solar panel becomes available, it could become a permanent power source for supplying long-term power for small, wireless telemetry systems as well as wireless sensors used at remote sites where frequent battery replacement is impractical,” said Assistant Professor Seokheun “Sean” Choi.

“This research...

Read More