Conversion Efficiency tagged posts

Silicon Heterojunction Solar Cells with up to 26.81% Efficiency

Silicon heterojunction solar cells with up to 26.81% efficiency
Electrical performance of LONGi SHJ solar cells with different designs. a, Diagram of LONGi SHJ solar cells. b,c, Experimental (Exp.) and fitted (Fit.) J–V curves for the p-a-Si:H cell (b, cell 1 in Fig. 1) and the p-nc-Si:H cell (c, cell 2 in Fig. 1). The fitted curves are derived from the Quokka2 simulations (Methods). Intrinsic J–V curves are obtained according to the Richter et al. model of intrinsic recombination with photon recycling (photon recycling coefficient of 0.6). The black arrows between the Suns–VOC and light J–V curves indicate the series resistance of solar cells. Insets: the PV parameters certified by ISFH. d, PLA and corresponding RS at the MPP derived by fitting J–V curves in b and c; rec, recombination...
Read More

New Spin Seebeck Thermoelectric device with 10X higher Conversion Efficiency created

Development of a low-cost, high-performance ferromagnetic alloy and significant improvement in thermoelectric conversion efficiency. Conventionally, expensive platinum was used as the electrode material to extract electric power in a spin Seebeck thermoelectric device. This time, new cobalt alloys were developed to replace the platinum. As a result, the cost was significantly reduced. Furthermore, the combination of the thermoelectric effect termed the "Anomalous Nernst Effect," appearing due to the ferromagnetic properties added to the cobalt alloys and the spin Seebeck effect, have improved the thermoelectric conversion efficiency by more than 10 times. Credit: NEC Corporation

Development of a low-cost, high-performance ferromagnetic alloy and significant improvement in thermoelectric conversion efficiency. Conventionally, expensive platinum was used as the electrode material to extract electric power in a spin Seebeck thermoelectric device. This time, new cobalt alloys were developed to replace the platinum. As a result, the cost was significantly reduced. Furthermore, the combination of the thermoelectric effect termed the “Anomalous Nernst Effect,” appearing due to the ferromagnetic properties added to the cobalt alloys and the spin Seebeck effect, have improved the thermoelectric conversion efficiency by more than 10 times. Credit: NEC Corporation

A thermoelectric (TE) device using cutting edge thermoelectric conversion technology has been created by a team ...

Read More