Cosmic web tagged posts

Astronomers find Largest Radio Galaxy ever

A joint radio-infrared view of Alcyoneus, a radio galaxy with a projected proper length of 5.0 megaparsecs. Researchers superimposed images from the LOFAR Two-meter Sky Survey (LoTSS), shown in orange, with images from the Wide-field Infrared Survey Explorer (WISE), shown in blue. (Image credit: Martijn Oei et al.)

By a stroke of luck, a team led by Dutch Ph.D. student Martijn Oei has discovered a radio galaxy of at least 16 million light-years long. The pair of plasma plumes is the largest structure made by a galaxy known thus far. The finding disproves some long-kept hypotheses about the growth of radio galaxies.

A supermassive black hole lurks in the center of many galaxies, which slows down the birth of new stars and therefore strongly influences the lifecycle of the galaxy as a...

Read More

Dark Matter Map reveals Hidden Bridges between Galaxies

A new map of dark matter in the local universe reveals several previously undiscovered filamentary structures connecting galaxies. The map, developed using machine learning by an international team including a Penn State astrophysicist, could enable studies about the nature of dark matter as well as about the history and future of our local universe.

Dark matter is an elusive substance that makes up 80% of the universe. It also provides the skeleton for what cosmologists call the cosmic web, the large-scale structure of the universe that, due to its gravitational influence, dictates the motion of galaxies and other cosmic material. However, the distribution of local dark matter is currently unknown because it cannot be measured directly...

Read More

Astronomers use Slime Mold Model to reveal Dark Threads of the Cosmic Web

This intricate filamentary network (above) is a reconstruction of the cosmic web created by feeding data on the locations and masses of 37,000 galaxies into an algorithm based on the growth patterns of a slime mold. The images below are expanded views of small regions, showing the underlying galaxies on the left and, on the right, the filaments of the cosmic web superimposed on the galaxies.

The problem-solving prowess of a simple slime mold has been harnessed to trace the large-scale structure of the universe. A computational approach inspired by the growth patterns of a bright yellow slime mold has enabled a team of astronomers and computer scientists at UC Santa Cruz to trace the filaments of the cosmic web that connects galaxies throughout the universe.

Their results, publishe...

Read More

Early Opaque Universe Linked to Galaxy Scarcity

Computer simulation of a region of the universe wherein a low-density "void" (dark blue region at top center) is surrounded by denser structures containing numerous galaxies (orange/white). The research done by Becker and his team suggests that early in cosmic history, these void regions would have been the murkiest places in the universe even though they contained the least amount of dark matter and gas. Credit: TNG Collaboration.

Computer simulation of a region of the universe wherein a low-density “void” (dark blue region at top center) is surrounded by denser structures containing numerous galaxies (orange/white). The research done by Becker and his team suggests that early in cosmic history, these void regions would have been the murkiest places in the universe even though they contained the least amount of dark matter and gas.
Credit: TNG Collaboration.

A team of astronomers led by George Becker at the University of California, Riverside, has made a surprising discovery: 12.5 billion years ago, the most opaque place in the universe contained relatively little matter. It has long been known that the universe is filled with a web-like network of dark matter and gas...

Read More