CRISPR tagged posts

New CRISPR system for Gene Silencing Doesn’t Rely on Cutting DNA

Scientists from Vilnius University’s (VU) Life Sciences Center (LSC) have discovered a unique way for cells to silence specific genes without cutting DNA. This research, led by Prof. Patrick Pausch and published in the journal Nature Communications, reveals a new way to silence genes that is akin to pressing a “pause” button on certain genetic instructions within cells.

The research team, including doctoral student Rimvydė Čepaitė, Dr. Aistė Skorupskaitė, undergraduate Gintarė Žvejyte and Prof. Pausch at Vilnius University, working alongside an international team, uncovered how cells use a specific system to locate and silence unwanted DNA. This system, which could eventually enable safer gene modifications, shows promise for repairing faulty genes that cause diseases.

“U...

Read More

Rare Diseases Point to Connections Between Metabolism and Immunity

Jeffrey Rathmell, PhD, left, and Andrew Patterson, PhD, have discovered a new set of metabolic genes that are important for immune cell function. (photo by Susan Urmy)

Overlap in genes suggests a potential new class of inborn errors of immunometabolism. Inherited diseases of metabolism and immunity have more in common than previously recognized, according to a new study published in the journal Science Immunology. The findings point to a new set of metabolic genes that are important for the function of immune system T cells, and they offer insights that could improve care for patients with these disorders.

The study examined genes that cause inborn errors of metabolism (disorders of the processes that cells use to convert food to energy) and inborn errors of immunity (disorders that...

Read More

CRISPR-based Strategy Edits Multiple Genes and could Treat Polygenic Diseases

Rice University engineers introduce DAP, a streamlined CRISPR-based technology that can perform many genome edits at once to address polygenic diseases. In experiments, DAP, for “drive-and-process,” enabled up to 31 edits with the base editor and three edits with the prime editor. Illustration by Qichen Yuan

A genome-editing strategy developed at Rice University can correct dozens of errors at the same time with high precision and efficiency, a possible breakthrough for those who suffer from diseases caused by a combination of mutations.

The “drive-and-process” array, DAP for short, also appears to be highly adept at avoiding off-target edits, errors that have plagued earlier gene-editing strategies.

Engineer Xue Sherry Gao and graduate student and lead author Qichen Yuan of ...

Read More

How to make the Gene-Editing tool CRISPR Work even Better

An illustration of how CAS-12A works with DNA. Illustration by Jenna Luecke, University of Texas at Austin

An illustration of how CAS-12A works with DNA. Illustration by Jenna Luecke, University of Texas at Austin

Scientists have found conclusive evidence that Cas9, the most popular enzyme currently used in CRISPR gene editing, is less effective and precise than one of the lesser-used CRISPR proteins, Cas12a. Because Cas9 is more likely to edit the wrong part of a plant’s or animal’s genome, disrupting healthy functions, the scientists make the case that switching to Cas12a would lead to safer and more effective gene editing.

“The overall goal is to find the best enzyme that nature gave us and then make it better still, rather than taking the first one that was discovered through historical accident,” said Ilya Finkelstein, an assistant professor of molecular biosciences and a co-author of the ...

Read More