cuprates tagged posts

Researchers show an Old Law still holds for Quirky Quantum Materials

Long before researchers discovered the electron and its role in generating electrical current, they knew about electricity and were exploring its potential. One thing they learned early on was that metals were great conductors of both electricity and heat.

And in 1853, two scientists showed that those two admirable properties of metals were somehow related: At any given temperature, the ratio of electronic conductivity to thermal conductivity was roughly the same in any metal they tested.

This so-called Wiedemann-Franz law has held ever since — except in quantum materials, where electrons stop behaving as individual particles and glom together into a sort of electron soup.

Experimental measurements have indicated that the 170-year-old law breaks down in these quantum material...

Read More

Newly Discovered Type of ‘Strange Metal’ could lead to Deep Insights

A new discovery could help scientists to understand ‘strange metals,’ a class of materials that are related to high-temperature superconductors and share fundamental quantum attributes with black holes.

Scientists understand quite well how temperature affects electrical conductance in most everyday metals like copper or silver. But in recent years, researchers have turned their attention to a class of materials that do not seem to follow the traditional electrical rules. Understanding these so-called “strange metals” could provide fundamental insights into the quantum world, and potentially help scientists understand strange phenomena like high-temperature superconductivity.

Now, a research team co-led by a Brown University physicist has added a new discovery to the strange meta...

Read More

The Shapes of Electrons: Solving a Cryptic Puzzle with a little help from a Hologram

This is an artist view of the shape of an electron in a high-temperature superconductor, which was measured in the work by Dalla Torre et al. The blue and red spheres represent Copper and Oxygen atoms, and the colored surface the positive (blue) and negative (red) parts of the wave describing the electron. Credit: Mario Sermoneta

This is an artist view of the shape of an electron in a high-temperature superconductor, which was measured in the work by Dalla Torre et al. The blue and red spheres represent Copper and Oxygen atoms, and the colored surface the positive (blue) and negative (red) parts of the wave describing the electron. Credit: Mario Sermoneta

A recent discovery provides an innovative technique for calculating the shapes of electrons. This finding will help scientists gain a better, faster understanding of the properties of complex materials. Dr. Emanuele Dalla Torre et al used holographic logic to compile an algorithm for visualizing the shape of an electron in a superconducting material...

Read More

Origin of High-Temperature Superconductivity in Copper-Oxide compound uncovered

(Clockwise from left) Brookhaven Lab physicists Ivan Bozovic, Anthony Bollinger, and Jie Wu, and postdoctoral researcher Xi He are with the atomic layer-by-layer molecular beam epitaxy system used to synthesize more than 2,500 thin films of a copper-oxide compound called LSCO. The team studied LSCO to understand why it can become superconducting at a much higher temperature than the ultra-chilled temperatures required by conventional superconductors. Credit: Brookhaven National Laboratory

(Clockwise from left) Brookhaven Lab physicists Ivan Bozovic, Anthony Bollinger, and Jie Wu, and postdoctoral researcher Xi He are with the atomic layer-by-layer molecular beam epitaxy system used to synthesize more than 2,500 thin films of a copper-oxide compound called LSCO. The team studied LSCO to understand why it can become superconducting at a much higher temperature than the ultra-chilled temperatures required by conventional superconductors. Credit: Brookhaven National Laboratory

Understanding this exotic behavior may pave the way for engineering materials that become superconducting at room temperature...

Read More