Dark energy tagged posts

Reinventing Cosmology: New research puts Age of Universe at 26.7 — not 13.7 — billion years

Galaxy

Our universe could be twice as old as current estimates, according to a new study that challenges the dominant cosmological model and sheds new light on the so-called “impossible early galaxy problem.”

“Our newly-devised model stretches the galaxy formation time by a several billion years, making the universe 26.7 billion years old, and not 13.7 as previously estimated,” says author Rajendra Gupta, adjunct professor of physics in the Faculty of Science at the University of Ottawa.

For years, astronomers and physicists have calculated the age of our universe by measuring the time elapsed since the Big Bang and by studying the oldest stars based on the redshift of light coming from distant galaxies...

Read More

Study using X-Ray Telescope indicates that Dark Energy is Uniformly Distributed in Space and Time

eROSITA X-Ray study indicates that dark energy is uniformly distributed in space and time
X-ray (over) and optical pseudo-color (below) images of three low mass clusters identified in the eFEDS survey data. The highest redshift cluster come from a time when the universe was approximately 10 billion years younger than today. The cluster galaxies in that case are clearly much redder than the galaxies in the other two clusters. Credit: eRosita

When Edwin Hubble observed distant galaxies in the 1920s, he made the groundbreaking discovery that the universe is expanding. It was not until 1998, however, that scientists observing Type Ia supernovae further discovered that the universe is not just expanding but has begun a phase of accelerating expansion. “To explain this acceleration, we need a source,” says Joseph Mohr, astrophysicist at LMU...

Read More

The Bubbling Universe: A previously unknown Phase Transition in the Early Universe

The bubbling universe: A previously unknown phase transition in the early universe
AI generated illustration of colliding bubbles in early universe. Credit: Birgitte Svennevig, University of Southern Denmark

What happened shortly after the universe was born in the Big Bang and began to expand? Bubbles occurred and a previously unknown phase transition happened, according to particle physicists.

Think of bringing a pot of water to the boil: As the temperature reaches the boiling point, bubbles form in the water, burst and evaporate as the water boils. This continues until there is no more water changing phase from liquid to steam.

This is roughly the idea of what happened in the very early universe, right after the Big Bang, 13.7 billion years ago.

The idea comes from particle physicists Martin S...

Read More

Dark Energy Survey releases most precise look at the Universe’s Evolution

In 29 new scientific papers, the Dark Energy Survey examines the largest-ever maps of galaxy distribution and shapes, extending more than 7 billion light-years across the Universe. The extraordinarily precise analysis, which includes data from the survey’s first three years, contributes to the most powerful test of the current best model of the Universe, the standard cosmological model. However, hints remain from earlier DES data and other experiments that matter in the Universe today is a few percent less clumpy than predicted.

First three years of survey data uses observations of 226 million galaxies over 1/8 of the sky...

Read More