dwarf galaxy tagged posts

Astronomers spot a Faint Dwarf Galaxy Disrupting a nearby Giant Spiral Galaxy

Figure 1: The giant spiral galaxy NGC 253 (shown in color) is accompanied by a newly discovered dwarf galaxy, NGC 253-dw2 (at upper left). The peculiar, elongated shape of the dwarf implies it is being torn apart by the gravity of the bigger galaxy – which in turn shows irregularities on its periphery that may be caused by the mutual interaction. Click here for the original tiff file. (Image credit: Copyright © 2015 R. Jay GaBany (Cosmotography.com) & Michael Sidonio. Insert image: R. Jay GaBany & Johannes Schedler.)

Figure 1: The giant spiral galaxy NGC 253 (shown in color) is accompanied by a newly discovered dwarf galaxy, NGC 253-dw2 (at upper left). The peculiar, elongated shape of the dwarf implies it is being torn apart by the gravity of the bigger galaxy – which in turn shows irregularities on its periphery that may be caused by the mutual interaction. (Image credit: Copyright © 2015 R. Jay GaBany (Cosmotography.com) & Michael Sidonio. Insert image: R. Jay GaBany & Johannes Schedler.)

An international team led by Aaron Romanowsky of San José State University has used the Subaru Telescope to identify a faint dwarf galaxy disrupting around a nearby giant spiral galaxy. The observations provide a valuable glimpse of a process that is fleeting but important in shaping galaxies.

“The outer region...

Read More

Astronomers discover how lowly Dwarf Galaxy becomes Star-Forming Powerhouse

ALMA discovers an unexpected population of compact interstellar clouds inside the dwarf irregular galaxy WLM. These star-forming clouds provide the necessary nurturing environment to form star clusters. As seen in relation to an optical image of the galaxy taken with the Blanco 4-meter telescope, (box upper left) an overlaying blanket of hydrogen gas (red) imaged with NRAO's VLA telescope provides the pressure necessary to concentrate molecules of carbon monoxide (yellow) as seen with ALMA. These regions correspond to dense cores capable of forming clusters like those found in the Milky Way and other large galaxies. Credit: B. Saxton (NRAO/AUI/NSF); M. Rubio et al., Universidad de Chile, ALMA (NRAO/ESO/NAOJ); D. Hunter and A. Schruba, VLA (NRAO/AUI/NSF); P. Massey/Lowell Observatory and K. Olsen (NOAO/AURA/NSF)

ALMA discovers an unexpected population of compact interstellar clouds inside the dwarf irregular galaxy WLM. These star-forming clouds provide the necessary nurturing environment to form star clusters. As seen in relation to an optical image of the galaxy taken with the Blanco 4-meter telescope, (box upper left) an overlaying blanket of hydrogen gas (red) imaged with NRAO’s VLA telescope provides the pressure necessary to concentrate molecules of carbon monoxide (yellow) as seen with ALMA. These regions correspond to dense cores capable of forming clusters like those found in the Milky Way and other large galaxies. Credit: B. Saxton (NRAO/AUI/NSF); M. Rubio et al., Universidad de Chile, ALMA (NRAO/ESO/NAOJ); D. Hunter and A. Schruba, VLA (NRAO/AUI/NSF); P. Massey/Lowell Observatory and K...

Read More

Detection of Gamma Rays from a newly discovered Dwarf Galaxy may point to Dark Matter

A newly discovered dwarf galaxy orbiting our own Milky Way has offered up a surprise -- it appears to be radiating gamma rays, according to an analysis by physicists at Carnegie Mellon, Brown, and Cambridge universities. The exact source of this high-energy light is uncertain at this point, but it just might be a signal of dark matter lurking at the galaxy's center. Credit: NASA/DOE/Fermi-LAT Collaboration/Geringer-Sameth & Walker/Carnegie Mellon University/Koushiappas/Brown University

A newly discovered dwarf galaxy orbiting our own Milky Way has offered up a surprise — it appears to be radiating gamma rays, according to an analysis by physicists at Carnegie Mellon, Brown, and Cambridge universities. The exact source of this high-energy light is uncertain at this point, but it just might be a signal of dark matter lurking at the galaxy’s center. Credit: NASA/DOE/Fermi-LAT Collaboration/Geringer-Sameth & Walker/Carnegie Mellon University/Koushiappas/Brown University

A newly discovered dwarf galaxy orbiting our own Milky Way has offered up a surprise – it appears to be radiating gamma rays, according to an analysis by physicists...

Read More

Dark Energy Survey finds 8 more faint celestial objects near our Milky Way Galaxy.

The Dark Energy Survey has now mapped one-eighth of the full sky (red shaded region) using the Dark Energy Camera on the Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile (foreground). This map has led to the discovery of 17 dwarf galaxy candidates in the past six months (red dots), including eight new candidates announced today. Several of the candidates are in close proximity to the two largest dwarf galaxies orbiting the Milky Way, the Large and Small Magellanic Clouds, both of which are visible to the unaided eye. By comparison, the new stellar systems are so faint that they are difficult to "see" even in the deep DES images and can be more easily visualized using maps of the stellar density (inset). Fourteen of the dwarf galaxy candidates found in DES data are visible in this particular image. Credit: Illustration: Dark Energy Survey Collaboration

The Dark Energy Survey has now mapped one-eighth of the full sky (red shaded region) using the Dark Energy Camera on the Blanco telescope at the Cerro Tololo Inter-American Observatory in Chile (foreground). This map has led to the discovery of 17 dwarf galaxy candidates in the past six months (red dots), including eight new candidates announced today. Several of the candidates are in close proximity to the two largest dwarf galaxies orbiting the Milky Way, the Large and Small Magellanic Clouds, both of which are visible to the unaided eye. By comparison, the new stellar systems are so faint that they are difficult to “see” even in the deep DES images and can be more easily visualized using maps of the stellar density (inset)...

Read More