elliptical galaxies tagged posts

ALMA dives into Black Hole’s ‘Sphere of Influence’

Telescope (NASA/ESA); Carnegie-Irvine Galaxy Survey

ALMA has made the most precise measurements of cold gas swirling around a supermassive black hole – the cosmic behemoth at the center of the giant elliptical galaxy NGC 3258. What happens inside a black hole stays inside a black hole, but what happens inside a black hole’s “sphere of influence” – the innermost region of a galaxy where a black hole’s gravity is the dominant force – is of intense interest to astronomers and can help determine the mass of a black hole as well as its impact on its galactic neighborhood.

Millimeter/submillimeter Array (ALMA) provide an unprecedented close-up view of a swirling disk of cold interstellar gas rotating around a supermassive black hole...

Read More

Massive Dead Disk Galaxy Challenges Theories of Galaxy Evolution

This artist's concept shows what the young, dead, disk galaxy MACS2129-1, right, would look like when compared with the Milky Way galaxy, left. Although three times as massive as the Milky Way, it is only half the size. MACS2129-1 is also spinning more than twice as fast as the Milky Way. Note that regions of Milky Way are blue from bursts of star formation, while the young, dead galaxy is yellow, signifying an older star population and no new star birth. Credit: NASA, ESA, and Z. Levy (STScI)

This artist’s concept shows what the young, dead, disk galaxy MACS2129-1, right, would look like when compared with the Milky Way galaxy, left. Although three times as massive as the Milky Way, it is only half the size. MACS2129-1 is also spinning more than twice as fast as the Milky Way. Note that regions of Milky Way are blue from bursts of star formation, while the young, dead galaxy is yellow, signifying an older star population and no new star birth. Credit: NASA, ESA, and Z. Levy (STScI)

By combining the power of a “natural lens” in space with the capability of Hubble Space Telescope, astronomers made a surprising discovery – the first example of a compact yet massive, fast-spinning, disk-shaped galaxy that stopped making stars only a few billion years after the big bang...

Read More

Galactic Fireworks illuminate Monster Hydrogen Blob in space

This rendering shows a snapshot from a cosmological simulation of a Lyman-alpha Blob similar to LAB-1. This simulation tracks the evolution of gas and dark matter using one of the latest models for galaxy formation running on the NASA Pleiades supercomputer. This view shows the distribution of gas within the dark matter halo, color coded so that cold gas (mainly neutral hydrogen) appears red and hot gas appears white. Embedded at the center of this system are two strongly star-forming galaxies, but these are surrounded by hot gas and many smaller satellite galaxies that appear as small red clumps of gas here. Lyman-alpha photons escape from the central galaxies and scatter off the cold gas associated with these satellites to give rise to an extended Lyman-alpha Blob. Credit: J.Geach/D.Narayanan/R.Crain

This rendering shows a snapshot from a cosmological simulation of a Lyman-alpha Blob similar to LAB-1. This simulation tracks the evolution of gas and dark matter using one of the latest models for galaxy formation running on the NASA Pleiades supercomputer. This view shows the distribution of gas within the dark matter halo, color coded so that cold gas (mainly neutral hydrogen) appears red and hot gas appears white. Embedded at the center of this system are two strongly star-forming galaxies, but these are surrounded by hot gas and many smaller satellite galaxies that appear as small red clumps of gas here. Lyman-alpha photons escape from the central galaxies and scatter off the cold gas associated with these satellites to give rise to an extended Lyman-alpha Blob. Credit: J.Geach/D...

Read More