energy-efficient optoelectronic and photocatalytic devices. tagged posts

Molybdenum disulfide holds promise for Light Absorption

Using a layer of molybdenum disulfide less than one nanometer thick, researchers in Rice University's Thomann lab were able to design a system that absorbed more than 35 percent of incident light in the 400- to 700-nanometer wavelength range. Credit: Thomann Group/Rice University

Using a layer of molybdenum disulfide less than one nanometer thick, researchers in Rice University’s Thomann lab were able to design a system that absorbed more than 35 percent of incident light in the 400- to 700-nanometer wavelength range. Credit: Thomann Group/Rice University

Mechanics know molybdenum disulfide (MoS2) as a useful lubricant in aircraft and motorcycle engines and in the CV and universal joints of trucks and automobiles. Rice University researcher Isabell Thomann knows it as a remarkably light-absorbent substance that holds promise for the development of energy-efficient optoelectronic and photocatalytic devices.

“Basically, we want to understand how much light can be confined in an atomically thin semiconductor monolayer of MoS2,” said Assitant/Prof Thomann...

Read More