equatorial plane tagged posts

Cosmic ravioli and spaetzle: Study details the History of Saturn’s Small Inner Moons

Study details the history of Saturn's small inner moons

Formation of Atlas, one of the small inner moons of Saturn. Its flat, ravioli-like shape is the result of a merging collision of two similar-sized bodies. The picture is a snapshot in mid-collision, before the moon’s reorientation due to tides is completed. Credit: A. Verdier

The small inner moons of Saturn look like giant ravioli and spaetzle. Their spectacular shape has been revealed by the Cassini spacecraft. For the first time, researchers of the University of Bern show how these moons were formed. The peculiar shapes are a natural outcome of merging collisions among similar-sized little moons as computer simulations demonstrate.

When Martin Rubin, astrophysicist at the University of Bern, saw the images of Saturn’s moons Pan and Atlas on the internet, he was puzzled...

Read More

New Model explains the Moon’s Weird Orbit

In the "giant impact" model of the moon's formation, the young moon began its orbit within Earth's equatorial plane. In the standard variant of this model (top panel), Earth's tilt began near today's value of 23.5 degrees. The moon would have moved outward smoothly along a path that slowly changed from the equatorial plane to the "ecliptic" plane, defined by Earth's orbit around the sun. If, however, Earth had a much larger tilt after the impact (~75 degrees, lower panel) then the transition between the equatorial and ecliptic planes would have been abrupt, resulting in large oscillations about the ecliptic. The second picture is consistent with the moon's current 5-degree orbital tilt away from the ecliptic. Credit: Douglas Hamilton

In the “giant impact” model of the moon’s formation, the young moon began its orbit within Earth’s equatorial plane. In the standard variant of this model (top panel), Earth’s tilt began near today’s value of 23.5 degrees. The moon would have moved outward smoothly along a path that slowly changed from the equatorial plane to the “ecliptic” plane, defined by Earth’s orbit around the sun. If, however, Earth had a much larger tilt after the impact (~75 degrees, lower panel) then the transition between the equatorial and ecliptic planes would have been abrupt, resulting in large oscillations about the ecliptic. The second picture is consistent with the moon’s current 5-degree orbital tilt away from the ecliptic. Credit: Douglas Hamilton

Simulations suggest a dramatic history for the Earth-moo...

Read More