Gemini North telescope tagged posts

First Observations ever of the Outskirts of a Supermassive Black Hole’s Accretion Disk

An artist’s impression of a supermassive black hole with an accretion disk orbiting it. The annotations show a hypothetical double-peaked profile with arrows indicating where in the broad line region each peak originates. Credit: NOIRLab/NSF/AURA/P. Marenfeld
An artist’s impression of a supermassive black hole with an accretion disk orbiting it. The annotations show a hypothetical double-peaked profile with arrows indicating where in the broad line region each peak originates. Credit: NOIRLab/NSF/AURA/P. Marenfeld

Nothing can evoke an existential perspective-spiral quite like looking at an image of a galaxy. At first glance, these sublime structures may appear rather serene. But in fact the center of many galaxies is a turbulent environment containing an actively feeding supermassive black hole.

Orbiting these incomprehensibly dense objects are swirling accretion disks of gas and dust, which feed the black hole and emit copious amounts of energy all along the electromagnetic spectrum—from high-energy gamma rays and X-rays, through visi...

Read More

‘Taffy Galaxies’ Collide, leave behind Bridge of Star-Forming Material

The Gemini North telescope, one half of the International Gemini Observatory, operated by NSF’s NOIRLab, captured this dazzling image of UGC 12914 and UGC 12915, which are nicknamed the Taffy Galaxies. Their twisted shape is the result of a head-on collision that occurred about 25 million years prior to their appearance in this image. A bridge of highly turbulent gas devoid of significant star formation spans the gap between the two galaxies.

Gemini North captures sprawling aftermath of head-on colllision between a pair of galaxies. The Gemini North telescope, one half of the International Gemini Observatory, operated by NSF’s NOIRLab, captured a dazzling image of UGC12914 and UGC312915, which are nicknamed the Taffy Galaxies...

Read More

Gemini North Telescope helps explain why Uranus and Neptune are Different Colors

Astronomers may now understand why the similar planets Uranus and Neptune are different colors. Using observations from the Gemini North telescope, the NASA Infrared Telescope Facility, and the Hubble Space Telescope, researchers have developed a single atmospheric model that matches observations of both planets. The model reveals that excess haze on Uranus builds up in the planet’s stagnant, sluggish atmosphere and makes it appear a lighter tone than Neptune.

Neptune and Uranus have much in common — they have similar masses, sizes, and atmospheric compositions — yet their appearances are notably different. At visible wavelengths Neptune has a distinctly bluer color whereas Uranus is a pale shade of cyan...

Read More

Astronomers detect Most Energetic Outflow from a Distant Quasar

noirlab2009a. The image at left shows an artist’s conception of the central portion of the galaxy that hosts the quasar SDSS J135246.37+423923.5 viewed at optical wavelengths. Thick winds obscure our view, and imprint signatures of the energetic outflow on the SDSS spectrum. The image at right shows the same artist’s view at infrared wavelengths, as seen by the Gemini GNIRS detector. The thick outflow is transparent at infrared wavelengths, giving us a clear line of sight to the quasar. The infrared spectrum yields the quasar redshift, and from that reference frame, we measured the record-breaking outflow velocity. Credit: International Gemini Observatory/NOIRLab/NSF/AURA/P. Marenfeld

Researchers using the Gemini North telescope on Hawai’i’s Maunakea have detected the most energeti...

Read More