Gran Telescopio CANARIAS (GTC) tagged posts

Astronomers Confirm a New ‘Trojan’ Asteroid that Shares an Orbit with Mars

The Mars trojan family keeps growing
An artist’s impression of an asteroid near Mars. Credit: Gabriel Pérez Díaz (SMM, IAC)

Using observations made with the Gran Telescopio Canarias (GTC) a study led from the Instituto de Astrofísica de Canarias (IAC) and the Universidad Complutense de Madrid (UCM) has confirmed that the asteroid 2023 FW14, discovered last year, is accompanying the red planet in its journey round the sun, ahead of Mars and in the same orbit.

With this new member, the group of Trojans that accompany Mars has increased in number to 17. But it shows differences in its orbit and chemical composition which may indicate that it is a captured asteroid, of a primitive type. The results are published in Astronomy & Astrophysics.

A team from the Instituto de Astrofísica de Canarias (IAC) and the Universida...

Read More

New Galaxy Images reveal a Fitful Start to the Universe

New images have revealed detailed clues about how the first stars and structures were formed in the Universe and suggest the formation of the Galaxy got off to a fitful start.

An international team of astronomers from the University of Nottingham and Centro de Astrobiología (CAB, CSIC-INTA) used data from the Hubble Space Telescope (HST) and the Gran Telescopio Canarias (GTC), the so-called Frontier Fields, to locate and study some of the smallest faintest galaxies in the nearby universe. This has revealed the formation of the galaxy was likely to be fitful. The first results have just been published in the journal Monthly Notices of the Royal Astronomical Society (MNRAS).

One of the most interesting questions that astronomers have been trying to answer for decades is how and w...

Read More

Revolutionary Camera Allows Scientists to Predict Evolution of Ancient Stars

Figure 3
Phase-folded HiPERCAM light curves of SDSS J2355+0448.

For the first time scientists have been able to prove a decades old theory on stars thanks to a revolutionary high-speed camera. Scientists at the University of Sheffield have been working with HiPERCAM, a high-speed, multicolour camera, which is capable of taking more than 1,000 images per second, allowing experts to measure both the mass and the radius of a cool subdwarf star for the first time.

The findings published today (8 April 2019) in Nature Astronomy have allowed researchers to verify the commonly used stellar structure model – which describes the internal structure of a star in detail – and make detailed predictions about the brightness, the colour and its future evolution.

Scientists know that old stars have few...

Read More

Scientists Study Early Evolution of activated Asteroid P/2016 G1

Scientists study early evolution of activated asteroid P/2016 G1

Median stack images of P/2016 G1 obtained with the OSIRIS instrument of the 10.4m GTC through a Sloan r′ filter, at the indicated dates. North is up, East to the left. The directions opposite to Sun and the negative of the orbital velocity motion are shown. The arrow in the middle of central panel indicates the westward feature that emerges from the inverted C-shaped mentioned in the text. The dimensions of the panels (from left to right, in km projected on the sky at the asteroid distance) are 27930×27930, 26305×26305, and 27025×27025. The images are stretched linearly in brightness, with maximum intensity levels, from left to right, of 8×10−14, 5×10−14, and 4×10−14 solar disk intensity units...

Read More