graphene tagged posts

Graphene and an Intense Laser open the door to the extreme

 

A research team has developed a large-area suspended graphene and irradiated the thinnest graphene target with an ultra-intense laser to realize high-energy ion acceleration. Their findings will be applied to the development of compact, efficient ion accelerators used for cancer treatment, nuclear fusion and so on.

Laser-driven ion acceleration has been studied to develop a compact and efficient plasma-based accelerator, which is applicable to cancer therapy, nuclear fusion, and high energy physics...

Read More

Cosmic Physics Mimicked on Table-Top as Graphene enables Schwinger Effect

Science_final_4k_compositeMatteo

Researchers at The University of Manchester have succeeded in observing the so-called Schwinger effect, an elusive process that normally occurs only in cosmic events. By applying high currents through specially designed graphene-based devices, the team — based at the National Graphene Institute — succeeded in producing particle-antiparticle pairs from a vacuum.

A vacuum is assumed to be completely empty space, without any matter or elementary particles. However, it was predicted by Nobel laureate Julian Schwinger 70 years ago that intense electric or magnetic fields can break down the vacuum and spontaneously create elementary particles.

This requires truly cosmic-strength fields such as those around magnetars or created transitorily during high-e...

Read More

Graphene for the Protection of Paintings: paving the way for Novel Methods in Art Preservation and Restoration

The exposure of colors used in artworks to ultraviolet (UV) and visible light in the presence of oxidizing agents triggers color degradation, fading and yellowing. These degradation mechanisms can lead to irreversible alteration of artworks. Protective varnishes and coatings currently used to protect art paintings are not acceptable solutions, since their removal requires the use of solvents, which can affect adversely the underlying work surface.

A team of researchers from the Institute of Chemical Engineering Sciences of the Foundation for Research and Technology-Hellas (FORTH/ ICE-HT), the Department of Chemical Engineering of the University of Patras, and the Center for Colloid and Surface Science (CSGI) of the University of Florence, led by Professor Costas Galiotis, had the i...

Read More

Graphene Key for Novel Hardware Security

A team of Penn State researchers has developed a new hardware security device that takes advantage of microstructure variations to generate secure keys.
 IMAGE: JENNIFER MCCANN/PENN STATE

As more private data is stored and shared digitally, researchers are exploring new ways to protect data against attacks from bad actors. Current silicon technology exploits microscopic differences between computing components to create secure keys, but artificial intelligence (AI) techniques can be used to predict these keys and gain access to data. Now, Penn State researchers have designed a way to make the encrypted keys harder to crack.

Led by Saptarshi Das, assistant professor of engineering science and mechanics, the researchers used graphene — a layer of carbon one atom thick — to develop a no...

Read More