graphene tagged posts

‘GO Dough’ makes Graphene easy to Shape and Mold

Highly processable and versatile, GO dough can be readily reshaped by cutting, pinching, molding and carving.
Credit: Jiaxing Huang/Northwestern University

New form of graphene oxide is fun to play with – and solves manufacturing challenges. A Northwestern University team is reshaping the world of graphene – literally. The team has turned graphene oxide (GO) into a soft, moldable and kneadable play dough that can be shaped and reshaped into free-standing, three-dimensional structures.

Called “GO dough,” the product might be fun to play with it, but it’s more than a toy. The malleable material solves several long-standing – and sometimes explosive – problems in the graphene manufacturing industry.

“Currently graphene oxide is stored as dry solids or powders, which are prone to co...

Read More

Route to Flexible Electronics made from Exotic Materials

MIT researchers have devised a way to grow single crystal GaN thin film on a GaN substrate through two-dimensional materials. The GaN thin film is then exfoliated by a flexible substrate, showing the rainbow color that comes from thin film interference. This technology will pave the way to flexible electronics and the reuse of the wafers. Credit: Wei Kong and Kuan Qiao; Creative Commons Attribution Non-Commercial No Derivatives license

MIT researchers have devised a way to grow single crystal GaN thin film on a GaN substrate through two-dimensional materials. The GaN thin film is then exfoliated by a flexible substrate, showing the rainbow color that comes from thin film interference. This technology will pave the way to flexible electronics and the reuse of the wafers.
Credit: Wei Kong and Kuan Qiao; Creative Commons Attribution Non-Commercial No Derivatives license

Cost-effective method produces semiconducting films from materials that outperform silicon. MIT engineers have developed a technique to fabricate ultrathin semiconducting films made from a host of exotic materials other than silicon...

Read More

Graphene paves the way to Faster High-speed Optical Communications

Electrical control of third harmonic generation (THG) can be obtained in single-layer graphene. In THG three low-frequency photons (red) sum up to generate one high-frequency (blue) photon. For this reason, THG can be used for optical frequency converters. Credit: Giancarlo Soavi, University of Cambridge

Electrical control of third harmonic generation (THG) can be obtained in single-layer graphene. In THG three low-frequency photons (red) sum up to generate one high-frequency (blue) photon. For this reason, THG can be used for optical frequency converters. Credit: Giancarlo Soavi, University of Cambridge

Technology could lead to new devices for faster, more reliable ultra-broad bandwidth transfers. For the first time, researchers demonstrated how electrical fields boost the non-linear optical effects of graphene. Graphene, among other materials, can capture photons, combine them, and produce a more powerful optical beam. This is due to a physical phenomenon called the optical harmonic generation, which is characteristic of nonlinear materials...

Read More

A Boost for Graphene-based Light Detectors: Photoexcited Graphene Puzzle Solved

Schematic representation of the ultrafast optical pump - terahertz probe experiment, where the optical pump induces electron heating and the terahertz pulse is sensitive to the conductivity of graphene directly after this heating process, which occurs on a timescale faster than a millionth of a millionth of a second. Credit: Illustration: Fabien Vialla/ICFO

Schematic representation of the ultrafast optical pump – terahertz probe experiment, where the optical pump induces electron heating and the terahertz pulse is sensitive to the conductivity of graphene directly after this heating process, which occurs on a timescale faster than a millionth of a millionth of a second. Credit: Illustration: Fabien Vialla/ICFO

Light detection and control lies at the heart of many modern device applications, such as the camera you have in your phone. Using graphene as a light-sensitive material for light detectors can offer significant improvements with respect to materials being used nowadays. For example, graphene can detect light of almost any colour, and it gives an extremely fast electronic response within one millionth of a millionth of a second...

Read More