graphite tagged posts

Janus Graphene opens doors to Sustainable Sodium-ion Batteries

Sodium battery research
​Sustainable concept. Sodium is one of the most abundant and affordable metals in the world. Now researchers at Chalmers University of Technology present a concept that allows sodium-ion batteries to match the capacity of today’s lithium-ion batteries. Using a novel type of graphene, they stacked specially designed graphene sheets with molecules in between. The new material allows the sodium ions (in green) to efficiently store energy.​Image: Marcus Folino and Yen Strandqvist/Chalmers University of Technology

In the search for sustainable energy storage, researchers at Chalmers University of Technology, Sweden, present a new concept to fabricate high-performance electrode materials for sodium batteries...

Read More

Hidden talents: Converting Heat into Electricity with Pencil and Paper

This is a sketch of the experiment. Credit: HZB

This is a sketch of the experiment. Credit: HZB

Thermoelectric materials can use thermal differences to generate electricity. Now there is an inexpensive and environmentally friendly way of producing them with the simplest of components: a normal pencil, photocopy paper, and conductive paint are sufficient to convert a temperature difference into electricity via the thermoelectric effect. Thermoelectric materials need to have low thermal conductivity despite their high electrical conductivity. Thermoelectric devices made of inorganic semiconductor materials such as bismuth telluride are already being used today in certain technological applications. However, such material systems are expensive and their use only pays off in certain situations...

Read More

Universe’s 1st Life might have been born on Carbon Planets

In this artist's conception, a carbon planet orbits a sunlike star in the early universe. Young planetary systems lacking heavy chemical elements but relatively rich in carbon could form worlds made of graphite, carbides and diamond rather than Earth-like silicate rocks. Blue patches show where water has pooled on the planet's surface, forming potential habitats for alien life. Credit: Christine Pulliam (CfA). Sun image: NASA/SDO

In this artist’s conception, a carbon planet orbits a sunlike star in the early universe. Young planetary systems lacking heavy chemical elements but relatively rich in carbon could form worlds made of graphite, carbides and diamond rather than Earth-like silicate rocks. Blue patches show where water has pooled on the planet’s surface, forming potential habitats for alien life. Credit: Christine Pulliam (CfA). Sun image: NASA/SDO

Our Earth consists of silicate rocks and an iron core with a thin veneer of water and life. But the first potentially habitable worlds to form might have been very different. New research suggests that planet formation in the early universe might have created carbon planets consisting of graphite, carbides, and diamond...

Read More

Mercury’s Mysterious ‘Darkness’ Explained

This oblique image of Basho shows the distinctive dark halo that encircles the crater. The halo is composed of so-called Low Reflectance Material (LRM), which was excavated from depth when the crater was formed. Basho is also renowned for its bright ray craters, which render the crater easily visible even from very far away. Credit: Courtesy NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

This oblique image of Basho shows the distinctive dark halo that encircles the crater. The halo is composed of so-called Low Reflectance Material (LRM), which was excavated from depth when the crater was formed. Basho is also renowned for its bright ray craters, which render the crater easily visible even from very far away. Credit: Courtesy NASA/Johns Hopkins University Applied Physics Laboratory/Carnegie Institution of Washington

Scientists have long been puzzled about what makes Mercury’s surface so dark. The innermost planet reflects much less sunlight than the Moon, a body on which surface darkness is controlled by the abundance of iron-rich minerals. These are known to be rare at Mercury’s surface, so what is the “darkening agent” there?

About a year ago, scientists proposed that Mer...

Read More